Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

IMPACT FACTOR 2018: 0.789

CiteScore 2018: 0.73

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.908

Mathematical Citation Quotient (MCQ) 2018: 0.53

See all formats and pricing
More options …
Volume 19, Issue 2


On the principal Ricci curvatures of a Riemannian 3-manifold

Amir Babak Aazami / Charles M. Melby-Thompson
Published Online: 2018-07-20 | DOI: https://doi.org/10.1515/advgeom-2018-0020


We study global obstructions to the eigenvalues of the Ricci tensor on a Riemannian 3-manifold. As a topological obstruction, we first show that if the 3-manifold is closed, then certain choices of the eigenvalues are prohibited: in particular, there is no Riemannian metric whose corresponding Ricci eigenvalues take the form (−μ, f, f), where μ is a positive constant and f is a smooth positive function. We then concentrate on the case when one of the eigenvalues is zero. Here we show that if the manifold is complete and its Ricci eigenvalues take the form (0, λ, λ), where λ is a positive constant, then its universal cover must split isometrically. If the manifold is closed, scalar-flat, and its zero eigenspace contains a unit length vector field that is geodesic and divergence-free, then the manifold must be flat. Our techniques also apply to the study of Ricci solitons in dimension three.

Keywords: Riemannian 3-manifold; Ricci curvature

MSC 2010: 53C20; 53C22; 53C25


  • [1]

    A. B. Aazami, The Newman–Penrose formalism for Riemannian 3-manifolds. J. Geom. Phys. 94 (2015), 1–7. MR3350264 Zbl 1319.53023CrossrefWeb of ScienceGoogle Scholar

  • [2]

    R. G. Bettiol, B. Schmidt, Three-manifolds with many flat planes. Trans. Amer. Math. Soc. 370 (2018), 669–693. MR3717993 Zbl 1377.53021Google Scholar

  • [3]

    C. H. Brans, Some restrictions on algebraically general vacuum metrics. J. Mathematical Phys. 16 (1975), 1008–1010. MR0408700 Zbl 0304.53022CrossrefGoogle Scholar

  • [4]

    H.-D. Cao, Recent progress on Ricci solitons. In: Recent advances in geometric analysis, volume 11 of Adv. Lect. Math., 1–38, Int. Press, Somerville, MA 2010. MR2648937 Zbl 1201.53046Google Scholar

  • [5]

    O. R. Kowalski, F. Prüfer, On Riemannian 3-manifolds with distinct constant Ricci eigenvalues. Math. Ann. 300 (1994), 17–28. MR1289828 Zbl 0813.53020CrossrefGoogle Scholar

  • [6]

    J. M. Lee, Introduction to smooth manifolds. Springer 2013. MR2954043 Zbl 1258.53002Google Scholar

  • [7]

    J. Milnor, Curvatures of left invariant metrics on Lie groups. Advances in Math. 21 (1976), 293–329. MR0425012 Zbl 0341.53030CrossrefGoogle Scholar

  • [8]

    E. Newman, R. Penrose, An approach to gravitational radiation by a method of spin coefficients. J. Mathematical Phys. 3 (1962), 566–578. MR0141500 Zbl 0108.40905CrossrefGoogle Scholar

  • [9]

    B. O’Neill, The geometry of Kerr black holes. A K Peters, Ltd., Wellesley, MA 1995. MR1328643 Zbl 0828.53078Google Scholar

  • [10]

    P. Petersen, Riemannian geometry. Springer 2006. MR2243772 Zbl 1220.53002Google Scholar

  • [11]

    B. Schmidt, J. Wolfson, Three-manifolds with constant vector curvature. Indiana Univ. Math. J. 63 (2014), 1757–1783. MR3298721 Zbl 1315.53040CrossrefWeb of ScienceGoogle Scholar

  • [12]

    A. Spiro, F. Tricerri, 3-dimensional Riemannian metrics with prescribed Ricci principal curvatures. J. Math. Pures Appl. (9) 74 (1995), 253–271. MR1327884 Zbl 0851.53022Google Scholar

  • [13]

    Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X, Y) ⋅ R = 0 II. Global versions. Geom. Dedicata 19 (1985), 65–108. MR797152 Zbl 0612.53023Google Scholar

  • [14]

    C. H. Taubes, The Seiberg–Witten equations and the Weinstein conjecture. Geom. Topol. 11 (2007), 2117–2202. MR2350473 Zbl 1135.57015CrossrefWeb of ScienceGoogle Scholar

  • [15]

    K. Yamato, A characterization of locally homogeneous Riemann manifolds of dimension 3. Nagoya Math. J. 123 (1991), 77–90. MR1126183 Zbl 0738.53032CrossrefGoogle Scholar

About the article

Received: 2017-05-26

Published Online: 2018-07-20

Published in Print: 2019-04-24

Communicated by: P. Eberlein

Funding: This work was supported by the World Premier International Research Center Initiative (WPI), MEXT, Japan; this manuscript first appeared when both authors were members of the Kavli Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, Japan.

Citation Information: Advances in Geometry, Volume 19, Issue 2, Pages 251–262, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2018-0020.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in