Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Analysis and Geometry in Metric Spaces

Ed. by Ritoré, Manuel

IMPACT FACTOR 2018: 0.536

CiteScore 2018: 0.83

SCImago Journal Rank (SJR) 2018: 1.041
Source Normalized Impact per Paper (SNIP) 2018: 0.801

Mathematical Citation Quotient (MCQ) 2018: 0.83

Open Access
See all formats and pricing
More options …

A Non-Probabilistic Proof of the Assouad Embedding Theorem with Bounds on the Dimension

Guy David
  • Univ Paris-Sud, Laboratoire de mathématiques UMR-8628, Orsay F-91405, France and Institut Universitaire de France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marie Snipes
Published Online: 2013-01-14 | DOI: https://doi.org/10.2478/agms-2012-0003


We give a non-probabilistic proof of a theorem of Naor and Neiman that asserts that if (E, d) is a doubling metric space, there is an integer N > 0, depending only on the metric doubling constant, such that for each exponent α ∈ (1/2; 1), one can find a bilipschitz mapping F = (E; dα ) ⃗ ℝ RN.

Keywords: Assouad Embedding; doubling metric spaces; snowflake distance

MSC: 53C23; 28A75; 54F45

  • P. Assouad, Plongements lipschitziens dans Rn, Bull. Soc. Math. France, 111(4), 429–448, 1983. Google Scholar

  • J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, 2001. Google Scholar

  • A. Naor and O. Neiman, Assouad’s theorem with dimension independent of the snowflaking, Revista Matemática Iberoamericana 28 (4), 1–21, 2012 Web of ScienceGoogle Scholar

About the article

Received: 2012-11-14

Accepted: 2012-12-26

Published Online: 2013-01-14

Citation Information: Analysis and Geometry in Metric Spaces, Volume 1, Pages 36–41, ISSN (Online) 2299-3274, DOI: https://doi.org/10.2478/agms-2012-0003.

Export Citation

©2012 Versita Sp. z o.o.. This content is open access.

Comments (0)

Please log in or register to comment.
Log in