Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Analysis and Geometry in Metric Spaces

Ed. by Ritoré, Manuel


IMPACT FACTOR 2018: 0.536

CiteScore 2018: 0.83

SCImago Journal Rank (SJR) 2018: 1.041
Source Normalized Impact per Paper (SNIP) 2018: 0.801

Mathematical Citation Quotient (MCQ) 2018: 0.83

Open Access
Online
ISSN
2299-3274
See all formats and pricing
More options …

Some Results on Maps That Factor through a Tree

Roger Züst
  • Corresponding author
  • Institut de Mathématiques de Jussieu, Bâtiment Sophie Germain, 75205 Paris, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-19 | DOI: https://doi.org/10.1515/agms-2015-0005

Abstract

We give a necessary and sufficient condition for a map deffned on a simply-connected quasi-convex metric space to factor through a tree. In case the target is the Euclidean plane and the map is Hölder continuous with exponent bigger than 1/2, such maps can be characterized by the vanishing of some integrals over winding number functions. This in particular shows that if the target is the Heisenberg group equipped with the Carnot-Carathéodory metric and the Hölder exponent of the map is bigger than 2/3, the map factors through a tree.

Keywords: trees; Heisenberg group; Stieltjes-Integral; currents; winding number

MSC: Primary: 51F, 30L; Secondary: 49Q15, 26A42, 55M25

References

  • [1] L. Ambrosio and B. Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), 1–80. CrossrefGoogle Scholar

  • [2] W. Blaschke, Kreis und Kugel, Veit, Leipzig, 1916. Google Scholar

  • [3] H. Boedihardjo, H. Ni and Z. Qian, Uniqueness of signature for simple curves, Journal of Functional Analysis 267 (2014), 1778–1806. Google Scholar

  • [4] D. Burago, Y. Burago and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, Volume 33, American Mathematical Society, Providence, 2001. Google Scholar

  • [5] L. Capogna, D. Danielli, S. Pauls and J. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Progress in Mathematics, Volume 259, Birkhäuser, Basel, 2007. Google Scholar

  • [6] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. Google Scholar

  • [7] P. K. Fritz and M. Hairer, A Course on Rough Paths: With an Introduction to Regularity Structures, Springer, 2014. Google Scholar

  • [8] M. Gromov, Carnot-Carathéodory spaces seen from within, in Sub-Riemannian geometry, Progress inMathematics, Volume 144, Birkhäuser, Basel, 1996, 79–323. Google Scholar

  • [9] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, Volume 152, Birkhäuser Boston Inc., Boston, 1999. With appendices by M. Katz, P. Pansu and S. Semmes. Google Scholar

  • [10] U. Lang, Local currents in metric spaces, J. Geom. Anal. 21 (2011), 683–742. Google Scholar

  • [11] U. Lang, T. Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 58 (2005), 3625–3655. CrossrefGoogle Scholar

  • [12] E. Le Donne and R. Züst, Some properties of Hölder surfaces in the Heisenberg group, Illinois J. Math. 57 (2013), 229–249. Google Scholar

  • [13] T. J. Lyons, Differential equations driven by rough signals, Rev. Math. Iberoamericana. 14 (1998), 215–310. Google Scholar

  • [14] E. Outerelo and J. M. Ruiz, Mapping degree theory, Graduate Studies in Mathematics, Volume 108, American Mathematical Society, Providence, 2009. Google Scholar

  • [15] J. C. Mayer and L. G. Oversteegen, A topological characterization of R-trees, Trans. Amer. Math. Soc. 320 (1990), 395–415. Google Scholar

  • [16] C. Riedweg and D. Schäppi, Singular (Lipschitz) homology and homology of integral currents, arXiv:0902.3831, 2009. Google Scholar

  • [17] S. Wenger and R. Young, Lipschitz homotopy groups of the Heisenberg groups, Geom. Funct. Anal. 24 (2014), 387–402. CrossrefGoogle Scholar

  • [18] L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), 251–282. Google Scholar

  • [19] R. Züst, Currents in snowflaked metric spaces, phd thesis, ETH Zurich, 2011. Google Scholar

  • [20] R. Züst, Integration of Hölder forms and currents in snowflake spaces, Calc. Var. and PDE 40 (2011), 99–124. Google Scholar

About the article

Received: 2014-09-30

Accepted: 2015-03-12

Published Online: 2015-03-19


Citation Information: Analysis and Geometry in Metric Spaces, Volume 3, Issue 1, ISSN (Online) 2299-3274, DOI: https://doi.org/10.1515/agms-2015-0005.

Export Citation

© 2015 Roger Züst. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in