Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Animal Migration

Ed. by Davis, Andrew

1 Issue per year

Open Access
See all formats and pricing
More options …

Strong Migratory Connectivity in a Declining Arctic Passerine

C.A. Macdonald
  • Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4
  • Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada K1A 0H3
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ K.C. Fraser / H.G. Gilchrist
  • Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada K1A 0H3
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T.K. Kyser
  • Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario, Canada K7L 3N6
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J.W. Fox
  • British Antarctic Survey, Cambridge, United Kingdom CB3 0ET. Current: Migrate Technology Ltd, Cambridge, United Kingdom CB1 0QY
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ O.P. Love
Published Online: 2012-11-30 | DOI: https://doi.org/10.2478/ami-2012-0003


Determining how animal populations are linked in space and time is important for identifying factors influencing population dynamics and for effective conservation and management. Arctic-breeding migratory passerines are declining and at risk due to forecasted climate change, but are a challenge to monitor due to their inaccessible breeding locations, long-distance migration routes and small body size. For the first time, we combine sub-gram geolocator technology and stable-isotope analysis with mark-recapture (banding) and citizen science data to determine patterns of migratory connectivity for multiple populations of a declining North American Arctic-breeding passerine, snow bunting (Plectrophenax nivalis). We show strong evidence for an east-west parallel migratory system, with Hudson Bay acting as a migratory divide. While band recoveries suggest strong migratory connectivity among eastern wintering populations (more than 95% of band recoveries reveal connections between western Greenland and eastern North America), novel application of geolocators and stable-hydrogen isotope analysis to a Canadian breeding population revealed a high degree of migratory connectivity within western North American wintering populations. Our results also show distinct differences in migratory distance between eastern and western populations, and illustrate how applying multiple techniques can effectively be used to track migration patterns of remote populations. Differences in annual distribution and migratory distance suggest that separate consideration of eastern and western wintering populations may improve future conservation and management efforts for this species.

Keywords: Snow bunting (Plectrophenax nivalis); Geolocators; Stable isotopes; Band recoveries; Citizen science; Migratory divide; Migration ecology

  • Martin T.G., Chadès I., Arcese P., Marra P.P., Possingham H.P. and Norris D.R., Optimal conservation of migratory species. PLoS ONE, 2007, 2: 751. Google Scholar

  • Webster M.S., Marra P.P., Haig S.M., Bensch S., Holmes R.T., Links between worlds: unraveling migratory connectivity. Trends Ecol. Evol., 2002, 17: 76–83. Google Scholar

  • Faaborg J., Holmes R.T., Anders A.D., Bildstein K.L., Dugger K.M., et al., Recent advances in understanding migration systems of New World land birds. Ecol. Monogr., 2010, 80(1): 3-48. Google Scholar

  • Grubb T.C. and Greenwald L., Sparrows and a bushpile: foraging responses to different combinations of predation risk and energy cost. Anim. Behav., 1982, 30: 637-640. Google Scholar

  • Brown D.R. and Long J.A., What is a winter floater? Causes, consequences, and implications for habitat selection. Condor, 2007, 109: 548-565. Google Scholar

  • North American Bird Conservation Initiative Canada. 2012. The State of Canada’s Birds, 2012. Environment Canada, Ottawa, Canada. 36 pages. Google Scholar

  • Cox G., Bird migration and global change. Washington DC: Island Press, Washington DC, 2010. Google Scholar

  • Birdlife International, IUCN Red List for Birds, 2012, http:// www.birdlife.org on 20/04/2012. Google Scholar

  • Butcher G.S. and Niven D.K., Combining data from the Christmas Bird Count and the Breeding Bird Survey to determine the continental status and trends of North American birds, 2007, http://stateofthebirds.audubon.org/ cbid/report.php Google Scholar

  • Chabot A.A., Hobson K.A. Van Wilgenburg S.L., McQuat G.J. & Lougheed S.C., Advances in linking wintering migrant birds to their breeding-ground origins using combined analyses of genetic and stable isotope markers. PLoS ONE, 2012, 7:e43627. (doi:10.1371/journal.pone.0043627) CrossrefGoogle Scholar

  • Hobson K.A., Wassenaar L.I. (Eds.), Tracking animal migration with stable isotopes, Academic Press, 2008. Google Scholar

  • Bowen G.J., Wassenaar L.I., Hobson K.A., Application of stable hydrogen and oxygen isotopes to wildlife forensic investigations at global scales, Oecologia, 2005, 143: 337– 348. Google Scholar

  • Hobson K.A., Wassenaar L.I., Linking breeding and wintering grounds of Neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers, Oecologia, 1997, 109: 142–148. Google Scholar

  • Stutchbury B.J.M., Tarof S.A., Done T., Gow E., Kramer P.M., Tautin J., et al., Tracking long-distance songbird migration by using geolocators, Science, 2009, 323: 896. Web of ScienceGoogle Scholar

  • Ryder TB, Fox JW, Marra PP (2011) Estimating migratory connectivity of Gray Catbirds (Dumatella carolinensis) using geolocator and mark-recapture data. Auk 128: 448–453. Web of ScienceGoogle Scholar

  • Tøttrup A., Klaassen R., Strandberg R., Thorup K., Kristensen M., Jørgensen P.S., et al., The annual cycle of a trans-equatorial Eurasian-African passerine migrant: different spatio-temporal strategies for autumn and spring migration, Proc. R. Soc. Biol. Sci. Ser. B, 2011, 279: 1008-1016. Web of ScienceGoogle Scholar

  • Bairlein F., Norris D.R., Nagel R., Bulte M., Voigt C., Fox J.W., et al., Cross-hemisphere migration of a 25 g songbird, Biol. Lett., 2012 doi:10.1098/rsbl.2011.1223 1744-957X CrossrefWeb of ScienceGoogle Scholar

  • Stanley C.Q., MacPherson M., Fraser K.C., McKinnon E.A., Stutchbury B.J.M., Repeat tracking of individual songbirds reveals consistent migration timing but flexibility in route, PLoS ONE, 2012, 7(7): e40688. doi:10.1371/journal. pone.0040688 CrossrefGoogle Scholar

  • Reichlin T.S., Schaub M., Menz M.H.M., Mermod M., Portner P., Arletta R., et al. Migration patterns of Hoopoe Upupa epops and Wryneck Jynx torquilla: an analysis of European ring recoveries, J. Ornithol., 2009 150: 393–400. Web of ScienceGoogle Scholar

  • Lyngs P., Migration and wintering ranges of birds in Greenland: An analysis of ringing recoveries, Dansk Ornithologisk Forenings Tidsskrift, 2003, 97(1): 1-167. Google Scholar

  • Rappole J.H., Tipton A.R., New harness design for attachment of radio transmitters to small passerines, J. Field Ornithol., 1991, 62: 335–337. Google Scholar

  • Caccamise D.F. and Hedin R.S., An aerodynamic basis for selecting transmitter loads in birds. Wilson Bulletin, 1985, 97: 306-318. Google Scholar

  • Lisovski S., Hewson C.M., Klassen R.H.G., Korner-Nievergelt F.,Kristensen M.W. and Hahn S. Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol. and Evol., 2012, 3(3): 603-612. Google Scholar

  • Bächler E., Hahn S., Schaub M., Arlettaz R., Jenni L., Fox J.W., et al., Year-round tracking of small trans-Saharan migrants using light-level geolocators, PLoS ONE, 2010, 5: e9566. Web of ScienceGoogle Scholar

  • Bearhop S., Furness R.W., Hilton G.M., Votier S.C. and Waldron S., A forensic approach to understanding diet and habitat use from stable isotope analysis of (avian) claw material, Funct. Ecol., 2003, 17(2): 270-275. CrossrefGoogle Scholar

  • Fraser K.C., Kyser T.K., Robertson R.J. and Ratcliffe L.M., Seasonal patterns in hydrogen isotopes of claws from breeding wood-warblers (Parulidae): utility for estimating migratory origins. Avian Cons. Ecol., 2008, 3(1):2 http:// www.ace-eco.org/vol3/iss1/art2/ Google Scholar

  • Bowen G.J., Chesson L., Nielson K., Cerling T.E. and Ehleringer J.R., Treatment methods for the determination of delta H-2 and delta O-18 of hair keratin by continuousflow isotope-ratio mass spectrometry. Rapid Commun. Mass Spectrom., 2005, 19:2371–2378. Google Scholar

  • Wassenaar L.I. and Hobson K.A., Comparative equilibrium and online technique for determination of non-exchangeable hydrogen for keratins for use in animal migration studies, Isotopes Environ. Health. Stud., 2003, 39(3): 211–217. Google Scholar

  • BirdLife International and NatureServe (2011) Bird species distribution maps of the world. BirdLife International, Cambridge, UK and NatureServe, Arlington, USA. Google Scholar

  • Bowen G.J., The Online Isotopes in Precipitation Calculator, version 2.2, 2012: http://www.waterisotopes.org Google Scholar

  • eBird: an online database of bird distribution and abundance [web application], Version 2, eBird, Ithaca, New York, 2012. Available http://www.ebird.org. Google Scholar

  • Royle J.A., Rubenstein D.R., The role of species abundance in determining the breeding origins of migratory birds using stable isotopes, Ecological Applications, 2004, 14: 1780– 1788. Google Scholar

  • Norris D.R., Marra P.P., Kyser T.K., Sherry T.W. and Ratcliffe L.M., Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird, Proc. R. Soc. Lond. B Biol. Sci., 2004, 271:59– 64. Google Scholar

  • Newton I. The Migration Ecology of Birds, Academic Press, Elsevier, London, 2008. Google Scholar

  • Lyon B. and Montgomerie R., Snow bunting (Plectrophenax nivalis), The Birds of North America Online (A. Poole, Ed.), Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online, 2011: http://bna.birds. cornell.edu/bna/species/198 Google Scholar

  • Fraser K.C., Stutchbury B.J.M., Silverio C., Kramer P.M., Barrow J., Newstead D., et al. Continent-wide tracking to determine migratory connectivity and tropical habitat associations of a declining aerial insectivore, Proc. R. Soc. B., 2012, 279(1749): 4901-4906 doi: 10.1098/rspb.2012.2207. CrossrefWeb of ScienceGoogle Scholar

  • Beauchamp G., What is the magnitude of the group-size effect on vigilance? Behav. Ecol., 2008, 19(6):1361-1368. Web of ScienceGoogle Scholar

  • Hurlbert A.H. and Liang Z., Spatiotemporal variation in avian migration phenology: citizen science reveals effect of climate change, PLoS ONE, 2012, 7(2): e31662. doi:10.1371/journal.pone.0031662 CrossrefGoogle Scholar

  • Intergovernmental Panel on Climate Change, Fourth assessment report (AR4) of the IPCC on climate change part I - the physical science basis. IPCC, Geneva, Switzerland, 2007.Google Scholar

About the article

Received: 2012-08-01

Accepted: 2012-10-21

Published Online: 2012-11-30

Citation Information: Animal Migration, Volume 1, Pages 23–30, ISSN (Online) 2084-8838, DOI: https://doi.org/10.2478/ami-2012-0003.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mark L Mallory, Anthony J Gaston, Jennifer F Provencher, Sarah N. P. Wong, Christine Anderson, Kyle H Elliott, H. Grant Gilchrist, Michael Janssen, Thomas Lazarus, Allison Patterson, Lisa Pirie-Dominix, and Nora Spencer
Environmental Reviews, 2018
Katherine R. S. Snell, Bård G. Stokke, Arne Moksnes, Kasper Thorup, Frode Fossøy, and Suzannah Rutherford
PLOS ONE, 2018, Volume 13, Number 9, Page e0202114
Emily A. McKinnon and Oliver P. Love
The Auk, 2018, Volume 135, Number 4, Page 834
Gunnar R. Kramer, Henry M. Streby, Sean M. Peterson, Justin A. Lehman, David A. Buehler, Petra B. Wood, Darin J. McNeil, Jeffery L. Larkin, and David E. Andersen
The Condor, 2017, Volume 119, Number 1, Page 108
Thor Veen, Mårten B. Hjernquist, Steven L. Van Wilgenburg, Keith A. Hobson, Eelke Folmer, Laura Font, Marcel Klaassen, and David William Pond
PLoS ONE, 2014, Volume 9, Number 5, Page e98075
Shanti E. Davis, Mark Maftei, Mark L. Mallory, and Claudia Mettke-Hofmann
PLOS ONE, 2016, Volume 11, Number 12, Page e0166043
Lykke Pedersen, Kevin C. Fraser, T. Kurt Kyser, and Anders P. Tøttrup
Journal of Ornithology, 2016, Volume 157, Number 4, Page 1037
Emily A. McKinnon, C. M. Macdonald, H. G. Gilchrist, and O. P. Love
Journal of Ornithology, 2016, Volume 157, Number 3, Page 681
Jared D. Wolfe and Erik I. Johnson
Journal of Field Ornithology, 2015, Volume 86, Number 3, Page 238
Emily A. McKinnon, Kevin C. Fraser, and Bridget J. M. Stutchbury
The Auk, 2013, Volume 130, Number 2, Page 211
Alex E. Jahn, Víctor R. Cueto, James W. Fox, Michael S. Husak, Daniel H. Kim, Diane V. Landoll, Jesús Pinto Ledezma, Heather K. LePage, Douglas J. Levey, Michael T. Murphy, and Rosalind B. Renfrew
The Auk, 2013, Volume 130, Number 2, Page 247
Eli S. Bridge, Jeffrey F. Kelly, Andrea Contina, Richard M. Gabrielson, Robert B. MacCurdy, and David W. Winkler
Journal of Field Ornithology, 2013, Volume 84, Number 2, Page 121

Comments (0)

Please log in or register to comment.
Log in