Jump to ContentJump to Main Navigation
Show Summary Details
More options …


International mathematical journal of analysis and its applications

CiteScore 2018: 0.72

SCImago Journal Rank (SJR) 2018: 0.363
Source Normalized Impact per Paper (SNIP) 2018: 0.530

Mathematical Citation Quotient (MCQ) 2018: 0.36

See all formats and pricing
More options …
Volume 37, Issue 4


Existence of variational solutions for time dependent integrands via minimizing movements

Leah Schätzler
  • Corresponding author
  • Department Mathematik, Friedrich-Alexander-Universität Erlangen–Nürnberg, Cauerstraße 11, 91058 Erlangen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-25 | DOI: https://doi.org/10.1515/anly-2017-0047


We prove the existence of variational solutions to equations of the form


where the function f merely satisfies a p-growth condition and is convex with respect to the gradient variable. In particular, we do not require any regularity assumption with respect to time. We obtain an existence result for integrands that are Lipschitz continuous in time via the method of minimizing movements. For the general existence result, we show stability of solutions with respect to approximation of the integrands. In this context, we prove a result related to Γ-convergence that is also valid for functionals with (p,q)-growth.

Keywords: minimizing movements

MSC 2010: 35K20; 49J40


  • [1]

    L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19 (1995), 191–246. Google Scholar

  • [2]

    L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed., Lect. Math. ETH Zürich, Birkhäuser, Basel, 2008. Google Scholar

  • [3]

    V. Bögelein, F. Duzaar and P. Marcellini, Parabolic systems with p,q-growth: A variational approach, Arch. Ration. Mech. Anal. 210 (2013), no. 1, 219–267. Web of ScienceGoogle Scholar

  • [4]

    V. Bögelein, F. Duzaar, P. Marcellini and C. Scheven, Doubly nonlinear equations of porous medium type: Existence via minimizing movements, preprint (2017). Google Scholar

  • [5]

    V. Bögelein, F. Duzaar and C. Scheven, The obstacle problem for parabolic minimizers, J. Evol. Equ. (2017), 10.1007/s00028-017-0384-4. Google Scholar

  • [6]

    V. Bögelein, T. Lukkari and C. Scheven, The obstacle problem for the porous medium equation, Math. Ann. 363 (2015), no. 1–2, 455–499. Web of ScienceCrossrefGoogle Scholar

  • [7]

    H. Brézis and F. E. Browder, Strongly nonlinear parabolic initial-boundary value problems, Proc. Natl. Acad. Sci. USA 76 (1979), no. 1, 38–40. CrossrefGoogle Scholar

  • [8]

    F. E. Browder and H. Brézis, Strongly nonlinear parabolic variational inequalities, Proc. Natl. Acad. Sci. USA 77 (1980), no. 2, 713–715. CrossrefGoogle Scholar

  • [9]

    M. Carozza, J. Kristensen and A. Passarelli di Napoli, Regularity of minimizers of autonomous convex variational integrals, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), no. 4, 1065–1089. Google Scholar

  • [10]

    M. Carozza, J. Kristensen and A. Passarelli di Napoli, Regularity of minimizers of variational integrals with wide range of anisotropy, Report no. OxPDE-14/01, University of Oxford, 2014, https://www.maths.ox.ac.uk/system/files/attachments/OxPDE\%20\%2014.01.pdf.

  • [11]

    G. Dal Maso, An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl. 8, Birkhäuser, Boston, 1993. Google Scholar

  • [12]

    E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer, New York, 1993. Google Scholar

  • [13]

    I. Ekeland and R. Témam, Convex Analysis and Variational Problems, Engl. ed., Class. Appl. Math. 28, Society for Industrial and Applied Mathematics, Philadelphia, 1999. Google Scholar

  • [14]

    U. Gianazza and G. Savaré, Abstract evolution equations on variable domains: An approach by minimizing movements, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 23 (1996), no. 1, 149–178. Google Scholar

  • [15]

    A. Lichnewsky and R. Temam, Pseudosolutions of the time-dependent minimal surface problem, J. Differential Equations 30 (1978), no. 3, 340–364. CrossrefGoogle Scholar

  • [16]

    J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. Google Scholar

  • [17]

    P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math. 51 (1985), no. 1–3, 1–28. CrossrefGoogle Scholar

  • [18]

    L. Schätzler, Existence of variational solutions for time dependent integrands via minimizing movements, Masterarbeit, 2017. Google Scholar

  • [19]

    R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Math. Surveys Monogr. 49, American Mathematical Society, Providence, 1997. Google Scholar

About the article

Received: 2017-09-21

Accepted: 2017-09-21

Published Online: 2017-10-25

Published in Print: 2017-11-01

Citation Information: Analysis, Volume 37, Issue 4, Pages 199–222, ISSN (Online) 2196-6753, ISSN (Print) 0174-4747, DOI: https://doi.org/10.1515/anly-2017-0047.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in