Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Astronomy

formerly Baltic Astronomy

Editor-in-Chief: Barbuy, Beatriz

IMPACT FACTOR 2018: 0.350

CiteScore 2018: 0.24

SCImago Journal Rank (SJR) 2018: 0.202
Source Normalized Impact per Paper (SNIP) 2018: 0.144

ICV 2017: 121.03

Open Access
See all formats and pricing
More options …
Volume 23, Issue 3-4


Medium Resolution Spectroscopy and Chemical Composition of Galactic Globular Clusters

D. A. Khamidullina / M. E. Sharina
  • Special Astrophysical Observatory, Russian Academy of Sciences, N. Arkhyz, Karachai-Cherkessian Republic, 369167, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ V. V. Shimansky / E. Davoust
Published Online: 2017-02-18 | DOI: https://doi.org/10.1515/astro-2017-0189


We used integrated-light medium-resolution spectra of six Galactic globular clusters and model stellar atmospheres to carry out population synthesis and to derive chemical composition and age of the clusters. We used medium-resolution spectra of globular clusters published by Schiavon et al. (2005), as well as our long-slit observations with the 1.93 m telescope of the Haute Provence Observatory. The observed spectra were fitted to the theoretical ones interactively. As an initial approach, we used masses, radii and log g of stars in the clusters corresponding to the best fitting isochrones in the observed color-magnitude diagrams. The computed synthetic blanketed spectra of stars were summed according to the Chabrier mass function. To improve the determination of age and helium content, the shape and depth of the Balmer absorption lines was analysed. The abundances of Mg, Ca, C and several other elements were derived. A reasonable agreement with the literature data both in chemical composition and in age of the clusters is found. Our method might be useful for the development of stellar population models and for a better understanding of extragalactic star clusters.

Keywords: Galaxy: globular clusters: individual: NGC 104, NGC 6121, NGC 6205, NGC 6218, NGC 6838, NGC 7078; Galaxy: abundances


  • Asplund M., Grevesse N., Sauval A. J., Scott P. 2009, ARA&A, 47, 481Google Scholar

  • Anders E., Grevesse N. 1989, Geochim. Cosmochim. Acta, 53, 197Google Scholar

  • Banse K., Crane Ph., Ounnas Ch., Ponz D. 1983, in Proc. of the DECUS Europe Symposium, Zurich, Switzerland, Digital Equipment Computer Users Society, p. 87Google Scholar

  • Bertelli G., Nasi E., Girardi L., Marigo P., 2009, A&A, 508, 335Google Scholar

  • Borkova T. V., Marsakov V. A. 2000, Astronomy Reports, 44, 665Google Scholar

  • Borkova T. V., Marsakov V. A. 2005, Astronomy Reports, 49, 405Google Scholar

  • Castelli F., Kurucz R. L. 2003, in Modeling of Stellar Atmospheres, IAU Symp. 210, eds. N. Piskunov et al., ASP, poster A20Google Scholar

  • Chabrier G. 2005, in The Initial Mass Function 50 Years Later, eds. E. Corbelli, F. Palla, Ap&SS Library, vol. 327, Springer, p. 41 (arXiv: astroph/0409465)Google Scholar

  • Coelho P. R. T. 2014, MNRAS, 440, 1027Google Scholar

  • Gratton R., Sneden C., Carretta E. 2004, ARA&A 42, 385Google Scholar

  • Griem H. R. 1960, ApJ, 132, 883Google Scholar

  • Harris W. E. 1996, AJ, 112, 1487 (http://www.physics,mcmaster.ca/Globular.html)

  • Khamidullina D. A., Sharina M. E., Shimansky V. V., Davoust E. 2014, Astrophysical Bulletin, acceptedGoogle Scholar

  • Koleva M., Prugniel Ph., Bouchard A., Wu Y. 2009, A&A, 501, 1269Google Scholar

  • Kurucz R. L. 1993, SAO CD-ROM, Nos. 1–18, Cambridge, MA, USAGoogle Scholar

  • Kurucz R. L. 1994, SAO CD-ROM, Nos. 19–22, Cambridge, MA, USAGoogle Scholar

  • Kurucz R. L. 1995, SAO CD-ROM, No. 23, Cambridge, MA, USAGoogle Scholar

  • Nersisyan S. E., Shavrina A. V., Yaremchuk A. A. 1989, Astrophysics, 30, 147Google Scholar

  • Piotto G., King I. R., Djorgovski S. G. et al. 2002, A&A, 391, 945Google Scholar

  • Preston G. W., Sneden C., Thompson I. B. et al. 2006, AJ, 132, 85Google Scholar

  • Pritzl B. J., Venn K. A., Irwin M. 2005, AJ, 130, 2140Google Scholar

  • Roediger J. C., Courteau S., Graves G., Schiavon R. P. 2014, ApJS, 210, 10Google Scholar

  • Sarajedini A., Bedin L. R., Chaboyer B. et al. 2007, AJ, 133, 1658Google Scholar

  • Schiavon R. P., Rose J. A., Courteau S., MacArthur L. A. 2005, ApJS, 160, 163 Google Scholar

  • Sharina M. E., Donzelli C., Shimansky V. V. et al. 2014, A&A, 570, 48Google Scholar

  • Sharina M. E., Shimansky V. V., Davoust E. 2013, Astronomy Reports, 57, 410Google Scholar

  • Shimansky V. V., Borisov N. V., Shimanskaya N. N. 2003, Astronomy Reports, 47, 763Google Scholar

  • Shimanskaya N. N., Bikmaev I. F., Shimansky V. V. 2011, Astrophysical Bulletin, 66, 332Google Scholar

  • VandenBerg D. A., Brogaard K., Leaman R., Casagrande L. 2013, AJ, 775, 134Google Scholar

  • Vidal C. R., Cooper J., Smith E. W. 1973, A&AS, 25, 37Google Scholar

About the article

Received: 2014-11-13

Accepted: 2014-11-24

Published Online: 2017-02-18

Published in Print: 2014-12-01

Citation Information: Open Astronomy, Volume 23, Issue 3-4, Pages 260–266, ISSN (Online) 2543-6376, DOI: https://doi.org/10.1515/astro-2017-0189.

Export Citation

© 2014 D. A. Khamidullina et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in