Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
See all formats and pricing
More options …

In vitro degradation of chitosan composite foams for biomedical applications and effect of bioactive glass as a crosslinker

Talita Martins
  • Corresponding author
  • Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, 6627, Av Antônio Carlos, Engineering School , Block 2, 31.270-901, Belo Horizonte/MG, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cheisy D. F. Moreira
  • Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, 6627, Av Antônio Carlos, Engineering School , Block 2, 31.270-901, Belo Horizonte/MG, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ezequiel S. Costa-Júnior / Marivalda M. Pereira
  • Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, 6627, Av Antônio Carlos, Engineering School , Block 2, 31.270-901, Belo Horizonte/MG, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-02-17 | DOI: https://doi.org/10.1515/bglass-2018-0005


In tissue engineering applications, 3D scaffolds with adequate structure and composition are required to provide durability that is compatiblewith the regeneration of native tissue. In the present study, the degradation of novel flexible 3D composite foams of chitosan (CH) combined with bioactive glass (BG)was evaluated, focusing on the role of BG as a physical crosslinker in the composites, and its effect on the degradation process. Highly porous CH/BG composite foams were obtained, and an elevated degradation temperature and lower degradation rate compared with pure chitosan were observed, probably as a result of greater intermolecular interaction between CH and BG. The Fourier transform infrared spectroscopy (FTIR) data suggest that hydrogen bonds were responsible for the physical crosslinking between CH and BG. The results confirm that CH/BG foams can combine controllable bioactivity and degradation behavior and, therefore, could be useful for tissue regeneration matrices.

Keywords: Chitosan-Bioactive glass Biocomposite; Degradation; Scaffolds Crosslinking


  • [1] Gibson L., J. Biomechanics of cellular solids, J Biomech 2005, 38, 377-99.Google Scholar

  • [2] Harley B. A., Leung J. H., Silva E. C. C. M., Gibson L. J. Mechanical characterization of collagen-glycosaminoglycan scaffolds, Acta Biomater 2007, 3, 463-74.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [3] Croisier F., Jérôme C., Chitosan-based biomaterials for tissue engineering, Eur Polym J 2013, 49, 780-92.Web of ScienceGoogle Scholar

  • [4] Testouri A., Honorez C., Barillec A., Langevin D., Drenckhan W., Orsay U. M. R. Highly Structured Foams from Chitosan Gels 2010, 6166-73.Google Scholar

  • [5] Tripathi A., Melo J. S. Preparation of a sponge-like biocomposite agarose-chitosan scaffold with primary hepatocytes for establishing an in vitro 3D liver tissue model, RSC Adv 2015, 5, 30701-10.Web of ScienceGoogle Scholar

  • [6] Mano J. F., Silva G. A., Azevedo H. S., Malafaya P. B., Sousa R. A., Silva S. S., et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends, J R Soc Interface 2007, 4, 999-1030.CrossrefGoogle Scholar

  • [7] Kurita K. Mini-Review Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans 2006, 8, 203-26.Google Scholar

  • [8] Lu B., Wang T., Li Z., Dai F., Lv L., Tang F., et al. Healing of skin woundswith a chitosan-gelatin sponge loadedwith tannins and platelet-rich plasma, Int J Biol Macromol 2016, 82, 884-91.PubMedGoogle Scholar

  • [9] Kavitha Sankar P. C., Rajmohan G., Rosemary M. J. Physicochemical characterisation and biological evaluation of freeze dried chitosan sponge for wound care, Mater Lett 2017 (In Press), doi: 10.1016/j.matlet.2017.05.010.CrossrefGoogle Scholar

  • [10] Seol Y-J., Lee J-Y., Park Y-J., Lee Y-M., Young-Ku., Rhyu I-C., et al. Chitosan sponges as tissue engineering scaffolds for bone formation, Biotechnol Lett 2004, 26, 1037-41.Google Scholar

  • [11] Jayakumar R., Prabaharan M., Sudheesh Kumar P. T., Nair S. V., Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications, Biotechnol Adv 2011, 29, 322-37.CrossrefGoogle Scholar

  • [12] Kucharska M., Butruk B., Walenko K., Brynk T., Ciach T. Fabrication of in-situ foamed chitosan/-TCP scaffolds for bone tissue engineering application, Mater Lett 2012, 85, 124-7.Web of ScienceGoogle Scholar

  • [13] Phaechamud T., Charoenteeraboon J. Antibacterial Activity and Drug Release of Chitosan Sponge Containing Doxycycline Hyclate, AAPS PharmSciTech 2008, 9, 829-35.CrossrefGoogle Scholar

  • [14] Costa-Júnior E. S., Barbosa-Stancioli E. F., Mansur A. A. P., VasconcelosW. L.,Mansur H. S. Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications, Carbohydr Polym 2009, 76, 472-81.Web of ScienceGoogle Scholar

  • [15] Mansur H. S., Costa H. S. Nanostructured poly(vinyl alcohol)/ bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications, Chem Eng J 2008, 137, 72-83.Web of ScienceGoogle Scholar

  • [16] Baino F., Novajra G., Vitale-brovarone C. Bioceramics and Scaffolds: A winning Combination for Tissue engineering 2015, 3, 1-17.Google Scholar

  • [17] Jones J. R. Reprint of: Review of bioactive glass: From Hench to hybrids. Acta Biomater 2015, 23, 53-82.Google Scholar

  • [18] Rezwan K., Chen Q. Z., Blaker J. J., Boccaccini A. R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3413-31.CrossrefGoogle Scholar

  • [19] Pereira M. M., Clark a E., Hench L. L. Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro, J BiomedMater Res 1994, 28, 693-8.Google Scholar

  • [20] Shimao M. Biodegradation of plastics, Curr Opin Biotechnol 2001, 12, 242-7.CrossrefGoogle Scholar

  • [21] Tamariz E., Rios-Ramrez A. Biodegradation of Medical Purpose Polymeric Materials and Their Impact on Biocompatibility, Biodegrad. - Life Sci., InTech 2013.CrossrefGoogle Scholar

  • [22] Martins T, Oliveira A. A. R., Oliveira A. X., Boaventura T. P., Barrioni B. R., Costa-júnior E. S., et al. Novel 3D composites with highly flexible behavior based on chitosan and bioactive glass for biomedical applications, Mater Chem Phys 2017, 189, 1-11.Google Scholar

  • [23] Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907-15.CrossrefGoogle Scholar

  • [24] Neto C. G. T., Giacometti J. A., Job A. E., Ferreira F.C., Fonseca J. L.C., Pereira M.R. Thermal analysis of chitosan based networks, Carbohydr Polym 2005, 62, 97-103.Google Scholar

  • [25] Sreenivasan K. Thermal stability studies of some chitosan metal ion complexes using differential scanning calorimetry, Polym Degrad Stab 1996, 52, 85-7.Google Scholar

  • [26] Chokradjaroen C., Rujiravanit R., Watthanaphanit A., et al. Enhanced degradation of chitosan by applying plasma treatment in combination with oxidizing agents for potential use as an anticancer agent, Carboh Polym 2017, 167, 1-11.Web of ScienceGoogle Scholar

  • [27] Freie T., Koh H. S., Kazazian K., Shoichet M. S. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 2005, 26, 5872-5878.Google Scholar

  • [28] Cerruti M., Greenspan D., Powers K. Effect of pH and ionic strength on the reactivity of Bioglass® 45S5. Biomaterials 2005, 26, 1665-74.Google Scholar

  • [29] Costa-Júnior E. S. Síntese, caracterização e avaliação do comportamento degradativo de híbridos poli (álcool vinílico)/vidro bioativo imersos em meio aquoso. UFMG, 2010.Google Scholar

  • [30] Maji K., Dasgupta S., Pramanik K., Bissoyi A. Preparation and Evaluation of Gelatin-Chitosan-Nanobioglass 3D Porous Scaffold for Bone Tissue Engineering 2016.Google Scholar

  • [31] Luz G. M., Boesel L., Campo A., Mano J. F. Micropatterning of bioactive glass nanoparticles on chitosan membranes for spatial controlled biomineralization, Langmuir 2012, 28, 6970-7.CrossrefWeb of ScienceGoogle Scholar

  • [32] Mota J., Yu N., Caridade S. G., Luz G. M., Gomes M. E., Reis R. L., et al. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration, Acta Biomater 2012, 8, 4173-80.Web of SciencePubMedGoogle Scholar

  • [33] Alhosseini S. N., Moztarzadeh F., Mozafari M., Asgari S., Dodel M., Samadikuchaksaraei A., et al. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering, Int J Nanomedicine 2012, 7, 25-34.Web of ScienceGoogle Scholar

  • [34] Costa-Júnior E. S., Pereira M. M., Mansur H. S. Properties and biocompatibility of chitosan films modified by blending with PVA and chemically crosslinked, J Mater Sci Mater Med 2009, 20, 553-61.CrossrefWeb of ScienceGoogle Scholar

  • [35] Mansur H. S., Mansur A. A. P., Barbosa-Stancioli E. F. Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels. Mater Sci Eng C 2009, 29, 1574-83.Web of ScienceCrossrefGoogle Scholar

  • [36] Jones J. R., Sepulveda P., Hench L. L. Dose-Dependent Behavior of Bioactive Glass Dissolution, J BiomedMater Res 2001, 58, 720-6.Google Scholar

  • [37] Oliveira A. A., Lima L., Dias S., Carvalho S.M., et al. Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications, Biomed Mater 2013, 8.Web of ScienceGoogle Scholar

  • [38] Moreira C. D. F., Carvalho S. M., Mansur H. S., Pereira M. M. Thermogelling chitosan-collagen-bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering, Mater Sci Eng C 2016, 58, 1207-16.Web of ScienceGoogle Scholar

  • [39] Rehman I., Hench L. L., BonfieldW., Smith R. Analysis of surface layers on bioactive glasses, Biomaterials 1994, 15, 865-70.Google Scholar

  • [40] Srinivasan S., Jayasree R., Chennazhi K. P., Nair S. V., Jayakumar R. Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration, Carbohydr Polym 2012, 87, 274-83.Google Scholar

  • [41] Lampman P., Vyvyan K., Pavia D. L., Kriz G. S. INTRODUCTION TO SPECTROSCOY. 4th ed. Washington: Cengage Learning, 2009.Google Scholar

  • [42] Pishbin F., Mouriño V., Flor S., Kreppel S., Salih V., Ryan M.P., et al. Electrophoretic Deposition of Gentamicin-Loaded Bioactive Glass/Chitosan Composite Coatings for Orthopaedic Implants, ACS Appl Mater Interfaces 2014, 6, 8796-806.CrossrefWeb of ScienceGoogle Scholar

  • [43] Lee D. S. H., Pai Y., Chang S. Effect of Thermal Treatment of the Hydroxyapatite Powders on the Micropore and Microstructure of Porous Biphasic Calcium Phosphate Composite Granules, J Biomater Nanobiotechnol 2013, 4, 114-8.Google Scholar

  • [44] Pishbin F., Mouriño V., Gilchrist J. B., McComb D. W., Kreppel S., Salih V., et al. Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system, Acta Biomater 2013, 9, 7469-79.Web of ScienceCrossrefGoogle Scholar

  • [45] Mota J., Yu N., Caridade S. G., Luz G. M., Gomes M. E., Reis R. L., et al. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration, Acta Biomater 2012, 8, 4173-80.Web of SciencePubMedGoogle Scholar

  • [46] Luz G. M., Mano J. F. Chitosan/bioactive glass nanoparticles composites for biomedical applications, Biomed Mater 2012, 7, 1-9.CrossrefWeb of ScienceGoogle Scholar

  • [47] Murphy C. M., Haugh M. G., O’Brien F. J. The effect of mean pore size on cell attachment, proliferation and migration in collagenglycosaminoglycan scaffolds for bone tissue engineering, Biomaterials 2010, 31, 461-6.CrossrefPubMedGoogle Scholar

  • [48] Gentile P., Mattioli-Belmonte M., Chiono V., Ferretti C., Baino F., Tonda-Turo C., et al. Bioactive glass/polymer composite scaffolds mimicking bone tissue, J Biomed Mater Res A 2012, 100, 2654-67.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-10-26

Revised: 2017-12-14

Accepted: 2018-01-20

Published Online: 2018-02-17

Citation Information: Biomedical Glasses, Volume 4, Issue 1, Pages 45–56, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2018-0005.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Cheisy D.F. Moreira, Sandhra M. Carvalho, Rodrigo M. Florentino, Andressa França, Bárbara S. Okano, Cleuza M.F. Rezende, Herman S. Mansur, and Marivalda M. Pereira
International Journal of Biological Macromolecules, 2019, Volume 132, Page 811

Comments (0)

Please log in or register to comment.
Log in