Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
See all formats and pricing
More options …

Bioactive glass combined with zein as composite material for the application in bone tissue engineering

Jasmin Hum
  • Corresponding author
  • Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shiva Naseri
  • Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany, Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aldo R. Boccaccini
  • Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-25 | DOI: https://doi.org/10.1515/bglass-2018-0007


The present study has focused on the development of new composite scaffolds based on the combination of zein with bioactive glass for the application in bone tissue engineering. Porous polymeric matrices were produced by the salt leaching technique. By incorporating 45S5 bioactive glass particles the lack of bioactivity can be remedied. However, the addition of bioactive glass is influencing the plasticization behavior of the zein matrix during the salt leaching which negatively affects the compression strength as well as the degradation behavior. This paper describes the process during leaching and explains the different behavior of zein with and without the presence of bioactive glass

Keywords: Bioactive glass; zein; bone tissue engineering; composite material; plasticization; scaffold


  • [1] E. García-Gareta, M.J. Coathup, G.W. Blunn, Osteoinduction of bone graftingmaterials for bone repair and regeneration., Bone. 81 (2015) 112-121. doi: 10.1016/j.bone.2015.07.007.CrossrefGoogle Scholar

  • [2] C.R. Lareau, M.E. Deren, A. Fantry, R.M.J. Donahue, C.W. DiGiovanni, Does autogenous bone graft work? A logistic regression analysis of data from 159 papers in the foot and ankle literature., Foot Ankle Surg. 21 (2015) 150-9. doi: 10.1016/j.fas.2015.03.008.CrossrefWeb of ScienceGoogle Scholar

  • [3] I. Dumic-Cule, M. Pecina, M. Jelic, M. Jankolija, I. Popek, L. Grgurevic, S. Vukicevic, Biological aspects of segmental bone defects management., Int. Orthop. 39 (2015) 1005-11. doi: 10.1007/s00264-015-2728-4.CrossrefWeb of ScienceGoogle Scholar

  • [4] E. Wintermantel, S.-W. Ha, Medizintechnik - Life Science Engineering, 4. Auflage, Springer, 2008.Google Scholar

  • [5] R. Lanza, R. Langer, J. Vacanti, Principles of Tissue Engineering, 4th Editio, Academic Press, 2013.Google Scholar

  • [6] S.R. Motamedian, S. Hosseinpour, M.G. Ahsaie, A. Khojasteh, Smart scaffolds in bone tissue engineering: A systematic review of literature., World J. Stem Cells. 7 (2015) 657-68. doi: 10.4252/wjsc.v7.i3.657.CrossrefGoogle Scholar

  • [7] S. Bose, M. Roy, A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds., Trends Biotechnol. 30 (2012) 546-54. doi: 10.1016/j.tibtech.2012.07.005.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [8] R. Shukla, M. Cheryan, Zein: the industrial protein from corn, Ind. Crops Prod. 13 (2001) 171-192. doi: 10.1016/S0926- 6690(00)00064-9.CrossrefGoogle Scholar

  • [9] H.-J. Wang, L. Di, Q.-S. Ren, J.-Y. Wang, Applications and Degradation of Proteins Used as Tissue Engineering Materials, Materials (Basel). 2 (2009) 613-635. doi: 10.3390/ma2020613.CrossrefGoogle Scholar

  • [10] E. Corradini, P.S. Curti, A.B. Meniqueti, A.F. Martins, A.F. Rubira, E.C. Muniz, Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials., Int. J. Mol. Sci. 15 (2014) 22438-70. doi: 10.3390/ijms151222438.Web of SciencePubMedGoogle Scholar

  • [11] A. Hoppe, N.S. Güldal, A.R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials. 32 (2011) 2757-2774.CrossrefGoogle Scholar

  • [12] S. Gong, H. Wang, Q. Sun, S.-T. Xue, J.-Y. Wang, Mechanical properties and in vitro biocompatibility of porous zein scaffolds., Biomaterials. 27 (2006) 3793-9. doi: 10.1016/j.biomaterials.2006.02.019.CrossrefGoogle Scholar

  • [13] S. Naseri, J. Hum,W.C. Lepry, A.K. Miri, S.N. Nazhat, A.R. Boccaccini, Fabrication and characterization of zein-bioactive glass scaffolds, Bioinspired, Biomim. Nanobiomaterials. 4 (2015) 73-78. doi: 10.1680/bbn.14.00025.CrossrefGoogle Scholar

  • [14] H.-J. Wang, S.-J. Gong, Z.-X. Lin, J.-X. Fu, S.-T. Xue, J.-C. Huang, J.-Y. Wang, In vivo biocompatibility and mechanical properties of porous zein scaffolds., Biomaterials. 28 (2007) 3952-64. doi: 10.1016/j.biomaterials.2007.05.017.CrossrefWeb of ScienceGoogle Scholar

  • [15] Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, 45S5 Bioglassr- derived glass-ceramic scaffolds for bone tissue engineering., Biomaterials. 27 (2006) 2414-25.CrossrefGoogle Scholar

  • [16] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials. 27 (2006) 2907-2915.CrossrefGoogle Scholar

  • [17] V.Müller, J.F. Piai, A.R. Fajardo, S.L. Fávaro, A.F. Rubira, E.C.Muniz, Preparation and Characterization of Zein and Zein-Chitosan Microspheres with Great Prospective of Application in Controlled Drug Release, J. Nanomater. 2011 (2011) 6.Web of ScienceGoogle Scholar

  • [18] D.J. Sessa, A. Mohamed, J.A. Byars, Chemistry and physical properties of melt-processed and solution-crosslinked corn zein., J. Agric. Food Chem. 56 (2008) 7067-75. doi: 10.1021/jf800712k.CrossrefGoogle Scholar

  • [19] T. Gillgren, S.A. Barker, P.S. Belton, D.M.R. Georget, M. Stading, Plasticization of zein: a thermomechanical, FTIR, and dielectric study., Biomacromolecules. 10 (2009) 1135-9. doi: 10.1021/bm801374q.Web of ScienceGoogle Scholar

  • [20] A. Johansson, P. Kollman, S. Rothenberg, J. McKelvey, Hydrogen bonding ability of the amide group, J. Am. Chem. Soc. 96 (1974) 3794-3800. doi: 10.1021/ja00819a013.CrossrefGoogle Scholar

  • [21] Edmund H. Immergut, Herman F. Mark, Plasticization and Plasticizer Processes, American Chemical Society, 1965.Google Scholar

  • [22] M.R. Filgueiras, G. La Torre, L.L. Hench, Solution effects on the surface reactions of a bioactive glass., J. Biomed.Mater. Res. 27 (1993) 445-53. doi: 10.1002/jbm.820270405.CrossrefGoogle Scholar

  • [23] J.M. Oliveira, S.S. Silva, P.B. Malafaya, M.T. Rodrigues, N. Kotobuki, M. Hirose, M.E. Gomes, J.F. Mano, H. Ohgushi, R.L. Reis, Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability., J. Biomed Mater. Res. A. 91 (2009) 175-86. doi: 10.1002/jbm.a.32213.CrossrefWeb of ScienceGoogle Scholar

  • [24] Y. Yusufoglu, M. Akinc, Deposition of Carbonated Hydroxyapatite (CO 3 HAp) on Poly(Methylmethacrylate) Surfaces by Decomposition of Calcium-EDTA Chelate, J. Am. Ceram. Soc. 91 (2008) 3147-3153. doi: 10.1111/j.1551-2916.2008.02540.x.CrossrefGoogle Scholar

  • [25] S. Koutsopoulos, Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods., J. Biomed. Mater. Res. 62 (2002) 600-12. doi: 10.1002/jbm.10280.CrossrefGoogle Scholar

  • [26] A. Stoch, W. Jastrzębski, A. Brożek, B. Trybalska, M. Cichocińska, E. Szarawara, FTIR monitoring of the growth of the carbonate containing apatite layers from simulated and natural body fluids, J. Mol. Struct. 511-512 (1999) 287-294. doi: 10.1016/S0022-2860(99)00170-2.CrossrefGoogle Scholar

  • [27] J.M. Stutman, J.D. Termine, A.S. Posner, Vibrational spectra and structure of the phosphate ion in some calcium phosphates, Trans. N. Y. Acad. Sci. 27 (1965) 669-675. doi: 10.1111/j.2164-0947.1965.tb02224.x.CrossrefGoogle Scholar

  • [28] M. Cerruti, D. Greenspan, K. Powers, Effect of pH and ionic strength on the reactivity of Bioglass 45S5., Biomaterials. 26 (2005) 1665-74. doi: 10.1016/j.biomaterials.2004.07.009.CrossrefGoogle Scholar

  • [29] Z.-H. Qu, H.-J. Wang, T.-T. Tang, X.-L. Zhang, J.-Y. Wang, K.-R. Dai, Evaluation of the zein/inorganics composite on biocompatibility and osteoblastic differentiation., Acta Biomater. 4 (2008)1360-8. doi: 10.1016/j.actbio.2008.03.006.Web of ScienceGoogle Scholar

About the article

Received: 2018-02-20

Accepted: 2018-06-13

Published Online: 2018-07-25

Citation Information: Biomedical Glasses, Volume 4, Issue 1, Pages 72–81, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2018-0007.

Export Citation

© 2018 Jasmin Hum, published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jahangirian, Azizi, Rafiee-Moghaddam, Baratvand, and Webster
Biomolecules, 2019, Volume 9, Number 10, Page 619

Comments (0)

Please log in or register to comment.
Log in