Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 71, Issue 12


Meteorite crater ponds as source of high zooplankton biodiversity

Kasper Świdnicki
  • Corresponding author
  • Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Maria Basińska
  • Laboratory of Wetland Ecology and Monitoring, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, ul. Bogumiła Krygowskiego 10, 61-680 Poznań, Poland
  • Department of Meteorology, Poznan University of Life Sciences, Piątkowska 94, 60–649 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Małgorzata Pronin
  • Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Natalia Kuczyńska-Kippen
  • Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-12 | DOI: https://doi.org/10.1515/biolog-2016-0162


Meteor crater ponds are extremely rare types of water body and consequently their environment, along with inhabiting fauna, are poorly recognised. We investigated the zooplankton community structure of three meteorite ponds. Their hydroperiod is usually the longest during the spring season, therefore the study-time covered the months between April and June. Within the craters we found 140 zooplankton species, which contributed to 20% of rotifer, 19% of cladoceran, 15% of copepod and 3% of ostracod Polish species. Our results showed a high diversity of zooplankton inhabiting these temporary ecosystems, even though we examined craters before the optimum of macrophyte development, which supports increase of invertebrate species richness. Only 43% of the species were common for all three ponds, although the meteorite craters were located very close to each other, possess the same catchment area and all were fishless. The high specificity of each pond was underlined by a high number of distinctive species (containing almost 30% of the total taxonomic structure). Zooplankton mainly consisted of eurytopic and common species, with representatives of families Brachionidae, Daphnidae and Cyclopidae having the highest frequency. However, over 10% of all species (e.g., Lecane elsa and Tretocephala ambigua) were determined as rare in Poland. Therefore these meteorite ponds are of a high conservation value despite the close proximity of a large urban agglomeration.

Key words: biodiversity; Rotifera; Cladocera; Copepoda; Ostracoda; temporary ponds


  • Basińska A.M. & Kuczyńska-Kippen N. 2009. Differentiated macrophyte types as a habitat for rotifers in small midforest water bodies. Biologia 64 (6): 1100–1107. CrossrefGoogle Scholar

  • Brendonck L.1996. Diapause, quiescence, hatching requirements: what we can learn from large freshwater branchiopods (Crustacea: Branchiopoda: Anostraca, Notostraca, Conchostraca). Hydrobiologia 320 (1): 85–97. CrossrefGoogle Scholar

  • Caprioli M., Katholm A.K., Melone G., Raml H., Ricci C. & Santo N. 2004. Trehalose in desiccated rotifers: a comparison between a bdelloid and a monogonont species. Comp. Biochem. Physiol.A Mol. Integr. Physiol. 139 (4): 527–532.CrossrefGoogle Scholar

  • Caprioli M. & Ricci C. 2005. Anhydrobiosis in bdelloid species, populations and individuals. Integr. Comp. Biol. 45 (5): 759–763. CrossrefGoogle Scholar

  • Chaparro G., Kandus P. & O’Farrell I. 2013. Effect of spatial heterogeneity on zooplankton diversity: a multi-scale habitat approximation in a floodplain lake. River Res. Appl. 31 (1): 85–97. CrossrefGoogle Scholar

  • Declerck S., De Bie T., Ercken D., Hampel H., Schrijvers S., Van Wichelen J., Gillard V., Mandiki R., Losson B. & Bauwens D. 2006. Ecological characteristic’s of small farmland ponds: Associations with land use practices at multiple spatial scales. Biol. Conserv. 131 (4): 523–532. CrossrefGoogle Scholar

  • De Meester L., Declerck S., Stoks R., Louette G. & Van De Meutter F. 2005. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat. Conserv. 15 (6): 712–725. CrossrefGoogle Scholar

  • Ejsmont-Karanin J. & Kuczyńska-Kippen N. 2001. Urban rotifers: structure and densities of rotifers communities in water bodies of the Poznań agglomeration area (western Poland). Hydrobiologia 446/447: 165–171 CrossrefGoogle Scholar

  • Flössner D.1972. Krebstiere, Crustacea, Kiemen- und Blattfüsser, Branchiopoda, Fischlause, Branchiura. Series: Die Tierwelt Deutschlands und der angrenzenden Meeresteile, no. 60 VEB Gustav Fisher, Verlag, Jena, 501 pp.Google Scholar

  • Frisch D. & Green A.J. 2007. Copepods come in first: rapid colonization of new temporary ponds. Fund. Appl. Limnol. Arch. Hydrobiol. 168 (4): 289–297. CrossrefGoogle Scholar

  • Gliwicz M.Z. 1986. Predation and the evolution of vertical migration in zooplankton. Nature 320: 746–748. CrossrefGoogle Scholar

  • Green J. 1981. Associations of rotifers in Australian crater lakes. J. Zool. 193 (4): 469–486. CrossrefGoogle Scholar

  • Havens E. & Beaver J.R. 2011. Composition, size, and biomass of zooplankton in large productive Florida lakes. Hydrobiologia 668 (1): 49–60. CrossrefGoogle Scholar

  • Hurnik H., Korpikiewicz H. & Kuźmiński H.1976. Distribution of the meteoritic and meteor dust in the region of the fall of the meteorite “Morasko”, pp. 27–37. In: Meteorite Morasko and the region of its fall, Uniwersytet im. Adama Mickiewicza w Poznaniu, Seria Astronomia 2, 63 pp.Google Scholar

  • Idzikowski B., Kováč J., Diko P., Stankowski W.T.J. & Muszynski A. 2010. Crystalline structure, stoichiometry and magnetic properties of the Morasko meteorite. Acta Phys. Pol.A 118 (5): 1071–1073.Google Scholar

  • Iglesias C., Mazzeo N., Meerhoff M., Lacerot G., Clemente J.M., Scasso F., Kruk C., Goyenola G., Garcia-Alonso J., Amsinck S.L., Paggi J.C., de Paggi S.J. & Jeppesen E. 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667 (1): 133–147. CrossrefGoogle Scholar

  • Iglikowska A. & Namiotko T. 2012. The impact of environmental factors on diversity of Ostracoda in freshwater habitats of subarctic and temperate Europe. Ann. Zool. Fenn. 49 (4): 193–218.Google Scholar

  • Karwowski Ł., Pilski A.S., Muszyński A., Arnold S., Notkin G. & Gurdziel A. 2011. New finds in the Morasko meteorite preserve, Poland. Meteorites 1 (1): 21–28.Google Scholar

  • Kolicka M., Dziuba M.K., Zawierucha K., Kuczyńska-Kippen N. & Kotwicki L. 2015. Palm house – biodiversity hotspot or risk of invasion? Aquatic invertebrates: The special case of Monogononta (Rotifera) under greenhouse conditions. Biologia 70 (1): 94–103. CrossrefGoogle Scholar

  • Koste W. & Shiel R.J. 1987. Rotifera from Australian inland waters. II. Epihanidae and Brachionidae (Rotifera: Monogononta). Invertebr. Taxon 1 (7): 949–1021. CrossrefGoogle Scholar

  • Kuczyńska-Kippen N., Basinska A.M. & Świdnicki K. 2013. Specificity of zooplankton distribution in meteorite crater ponds (Morasko, Poland). Knowl. Manag. Aquat. Ecosyst. 409: 08. .CrossrefGoogle Scholar

  • KülköylŚoğl O., Dügel M., BalciM., Deveci A., Avuka D. & Kilic M. 2010. Limnoecological relationships between water-level fluctuations and Ostracoda (Crustacea) species composition in Lake Sunnet (Bolu, Turkey). Turk. J. Zool. 34: 429–442. CrossrefGoogle Scholar

  • Lampert W., Lampert K.P. & Larsson P. 2010. Coexisting overwintering strategies in Daphnia pulex: A test of genetic differences and growth responses. Limnol. Oceanogr. 55 (5): 1893–1900. CrossrefGoogle Scholar

  • Lampert W. & Sommer U. 2001. Ekologia wód śródladowych [Freshwater Ecology]. Wydawnictwo Naukowe PWN, Warszawa, 389 pp. ISBN: 83-01-11960-8Google Scholar

  • Lemmens P., Mergeay J., De Bie T., Van Wichelen J., De Meester L. & Declerck S.A. 2013. How to maximally support local and regional biodiversity in applied conservation? Insights from pond management. PloS One 8 (8): e72538. CrossrefGoogle Scholar

  • Lisiewska M. 2006. Endangered macrofungi of selected nature reserves in Wielkopolska. Acta Mycol. 41 (2): 241–252. CrossrefGoogle Scholar

  • Louette G., De Bie T., Vandekerkhove J., Declerck S. & De Meester L. 2007. Analysis of the inland cladocerans of Flanders (Belgium) – Inferring changes over the past 70 years. Belg. J. Zool. 137 (1): 117–123.Google Scholar

  • Malekzadeh-Viayeh R. & Špoljar M. (2012) Structure of rotifer assemblages in shallow waterbodies of semi-arid northwest Iran differing in salinity and vegetation cover. Hydrobiologia 686 (1): 73–89. CrossrefGoogle Scholar

  • Matthews W.J. & Marsh-Matthews E. 2003. Effects of drought on fish across axes of space, time and ecological complexity. Freshwater Biol. 48 (7): 1232–1253. CrossrefGoogle Scholar

  • Messyasz B.1996. Fitoplankton zbiornikow wodnych połozonych na terenie rezerwatu przyrody Meteoryt Morasko [Phytoplankton of water bodies located in the nature reserve Meteoryt Morasko]. Rocznik Naukowy Polskiego Towarzystwa Ochrony Przyrody Salamandra 01:19–23.Google Scholar

  • Mori N. & Meisch C. 2012. Contribution to the knowledge on the distribution of Recent free-living ostracods (Podocopida, Ostacoda, Crustacea) in Slovenia. Natura Sloveniae 14 (2): 5–22.Google Scholar

  • Nkambo M., Bugenyi F.W., Naluwayiro J., Nayiga S., Kiggundu V., Magezi G. & Waswa L. 2015. Planktonic and Fisheries biodiversity of Alkaline Saline crater lakes of Western Ugunda. Biodivers. J. 6 (1): 95–104.Google Scholar

  • Picazo F., Moreno J.L. & Millán A. 2010. The contribution of standing waters to aquatic biodiversity: the case of water beetles in southeastern Iberia. Aquat. Ecol. 44: 205–216. CrossrefGoogle Scholar

  • Pilski A.S., Wasson J.T., Muszyński A., Kryza R., Karwowski L. & Nowak M. 2013. Low-Ir IAB irons from Morasko and other locations in central Europe: One fall, possibly distinct from IAB-MG. Meteoritics Planet Sci. 48 (12): 2531–2541. CrossrefGoogle Scholar

  • Pinel-Alloul B. & Mimouni E.A. 2013. Are cladoceran diversity and community structure linked to spatial heterogeneity in urban landscapes and pond environments? Hydrobiologia 715 (1): 195–212. CrossrefGoogle Scholar

  • Radwan S., Bielańska-Grajner I. & Ejsmont-Karabin J. 2004. Wrotki Rotifera. Fauna słodkowodna Polski [Rotifers. Polish Freshwater fauna] 32A. Polskie Towarzystwo Hydrobiologiczne, Uniwersytet Łödzki, Oficyna Wydawnicza Tercja, Łödź, 447 pp.Google Scholar

  • Rybak J.I. & Błędzki L.A. 2010. Słodkowodne skorupiaki planktonowe. Klucz do oznaczania gatunków [Freshwater planktonic crustaceans. Identification guide]. Warszawa: Wydawnictwo Uniwersytetu Warszawskiego, 366 pp. ISBN: 978-83235-1163-2Google Scholar

  • Schindler D.W. 2000. Aquatic problems caused by human activities in Banff National Park, Alberta, Canada. Ambio 29 (7): 401–407. CrossrefGoogle Scholar

  • Schröder T. 2001 Colonising strategies and diapause of planktonic rotifers (Monogononta, Rotifera) during aquatic and terrestrial phases in a floodplain (Lower Oder Valley, Germany). Int. Rev. Hydrobiol. 86 (6): 635–660. CrossrefGoogle Scholar

  • Semlitsch R.D. & Bodie R. 1998. Are small, isolated wetlands expendable? Conserv. Biol. 12:1129–1133.Google Scholar

  • Shinde Vinod A. & More S.M. 2013. Study of Physicochemical Characterization of Lonar Lake Effecting Biodiversity Lonar Lake, Maharashtra, India. Int. Res. J. Environment Sci. 2 (12): 25–28.Google Scholar

  • Smith DG. 2001. Pennak’s freshwater invertebrates of the United States: Porifera to Crustacea. 4th ed. Toronto: John Wiley & Sons, 664 pp. ISBN: 978-0-471-35837-4Google Scholar

  • Sohar K. & Meidla T. 2010. Changes in the Early Holocene lacustrine environment inferred from the subfossil ostracod record in the Varangu section, northern Estonia. Eston. J. Earth Sci. 59 (3): 195–206. CrossrefGoogle Scholar

  • Stachowiak P. 2002. Badania nad rozsiedleniem Anthribidae (Coleoptera) w Polsce [The study of Anthribidae (Coleoptera) distribution]. Wiad. Entomol. 20 (3-4): 137–142.Google Scholar

  • Stankowski W.T.J. 2001. The geology and morphology of the natural reserve “Meteoryt Morasko”. Planet Space Sci. 49 (7): 749–753. CrossrefGoogle Scholar

  • Sywula T.1974. Fauna słodkowodna Polski. Zeszyt 24 Małssoraczki Ostracoda [Polish freshwater fauna. Issue 24. Ostracods]. PWN Polska Akademia Nauk, Instytu Zoologii, Oddziałw Poznaniu, Warszawa – Poznań, 314 pp.Google Scholar

  • Špoljar M., Dražina T., Habdija I., Meseljević M. & Grečić Z. 2011. Contrasting zooplankton assemblages in two oxbow lakes with low transparencies and narrow emergent macrophyte belts (Krapina River, Croatia). Int. Rev. Hydrobiol. 96 (2): 175–190. CrossrefGoogle Scholar

  • Špoljar M., Dražina T., Šargač J., Kralj Borojević K. & žutinić P. 2012. Submerged macrophytes as a habitat for zooplankton development in two reservoirs of a flow-through system (Papuk Nature Park, Croatia). Ann. Limnol. – Int. J. Limnol. 48: 161–175. CrossrefGoogle Scholar

  • Špoljar, M., Tomljanović, T., Dražina, T., Lajtner, J., Štulec, H. & Matulić, D. 2016. Zooplankton structure in two interconnected ponds: similarities and differences. Croat. J. Fish. 74 (1): 6–13. CrossrefGoogle Scholar

  • Świdnicki K., Basińska A.M. & Kuczyńska-Kippen N. 2016. Instability of spring environmental conditions as a driver of biotic interactions and crustacean structuring in meteorite crater ponds (Morasko, Poland). Oceanol. Hydrobiol. Stud. 45 (1): 66–78. CrossrefGoogle Scholar

  • Tavernini S., Mura G. & Rossetti G. 2005. Factors influencing the seasonal phenology and composition of zooplankton communities in mountain temporary pools. Int. Rev. Hydrobiol. 90 (4): 358–375. CrossrefGoogle Scholar

  • Taylor C.M. & Duggan I.C. 2012. Can biotic resistance be utilized to reduce establishment rates of non-indigenous species in constructed waters? Biol. Invasions 14 (2): 307–322. CrossrefGoogle Scholar

  • Vijverberg J., Dejen E., Gatahun A. & Nagelkerke L.A.J. 2014. Zooplankton, fish communities and the role of planktivory in nine Ethiopian lakes. Hydrobiologia 722 (1): 45–60. CrossrefGoogle Scholar

  • Wellborn G.A., Skelly D.K. & Werner E.E. 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Syst. 27: 337–363. CrossrefGoogle Scholar

  • Williams D.D. 2002. Temporary water crustaceans: biodiversity and habitat loss, pp. 223–233. In: Escobar-Briones E. & Alvarez F. (eds), Modern Approaches to the Study of Crustacea, Springer, New York, 355 pp. CrossrefGoogle Scholar

  • Williams P., Whitfield M., Biggs J., Bray S., Fox G., Nicolet P. & Sear D. 2003.Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 115 (2): 329–341. CrossrefGoogle Scholar

About the article

Received: 2016-06-27

Accepted: 2016-12-02

Published Online: 2017-01-12

Published in Print: 2016-12-01

Citation Information: Biologia, Volume 71, Issue 12, Pages 1361–1368, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2016-0162.

Export Citation

© 2016 Institute of Zoology, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in