Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Botanica Croatica

The Journal of University of Zagreb

2 Issues per year

IMPACT FACTOR 2016: 0.516
5-year IMPACT FACTOR: 0.694

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.269
Source Normalized Impact per Paper (SNIP) 2016: 0.722

Open Access
See all formats and pricing
More options …

Physiological responses of peanut (Arachis hypogaea L.) cultivars to water deficit stress: status of oxidative stress and antioxidant enzyme activities

Koushik Chakraborty / Amrit L. Singh / Kuldeep A. Kalariya / Nisha Goswami / Pratap V. Zala
Published Online: 2015-04-07 | DOI: https://doi.org/10.1515/botcro-2015-0011


From a field experiment, the changes in oxidative stress and antioxidant enzyme activities were studied in six Spanish peanut cultivars subjected to 25−30 days of water deficit stress at two different stages: pegging and pod development stages. Imposition of water deficit stress significantly reduced relative water content, membrane stability and total carotenoid content in all the cultivars, whereas total chlorophyll content increased at pegging stage but decreased at pod developmental stage. Chlorophyll a/b ratio increased under water deficit stress in most of the cultivars suggesting a greater damage to chlorophyll b rather than an increase in chlorophyll a content. Oxidative stress measured in terms of H2O2, superoxide radical content and lipid peroxidation increased under water deficit stress, especially in susceptible cultivars such as DRG 1, AK 159 and ICGV 86031. Relationship among different physiological parameters showed that the level of oxidative stress, in terms of production of reactive oxygen species, was negatively correlated with activities of different antioxidant enzymes such as superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and glutathione reductase. In conclusion, the study shows that water deficit stress at pod development stage proved to be more detrimental than at pegging stage. The higher activities of antioxidant enzymes in the tolerant cultivars like ICGS 44 and TAG 24 were responsible for protection of oxidative damage and thus provide better tolerance to water deficit stress.

Keywords : antioxidant enzymes; Arachis hypogaea L.; lipid peroxidation; oxidative stress; peanut; reactive oxygen species


  • AEBI, H., 1984: Catalase in vitro. Methods in Enzymology 105, 121-126.Google Scholar

  • AGARWAL, S., SAIRAM, R. K., SRIVASTAVA, G. C., MEENA, R. C., 2005: Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biologia Plantarum 49, 541-550.Google Scholar

  • ARJENAKI, F. G., JABBARI, R., MORSHEDI, A., 2012: Evaluation of drought stress on relative water content, chlorophyll content and mineral elements of wheat (Triticum aestivum L.) varieties. International Journal of Agriculture and Crop Sciences 4, 726-729.Google Scholar

  • ARNON, D. I., 1949: Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology 24, 1-15.CrossrefGoogle Scholar

  • ARUNYANARK, A., JOGLOY, S., AKKASAENG, C., VORASOOT, N., KESMALA, T., RAO, R. C. N., WRIGHT, G. C., PATANOTHAI, A., 2008: Chlorophyll stability is an indicator of drought tolerance in peanut. Journal of Agronomy and Crop Science 194, 113-125.Google Scholar

  • ASHRAF, M., 2010: Inducing drought tolerance in plants. Biotechnological Advances 28, 169-183.CrossrefGoogle Scholar

  • BAJJI, M., LUTTS, S., KINET, J. M., 2001: Water defi cit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Science 160, 669-681.Google Scholar

  • BLACK, C. A., 1965: Methods of soil analysis: Part I physical and mineralogical properties. American Society of Agronomy, Madison, Wisconsin, USA.Google Scholar

  • BOOTE, K. J., 1982: Growth stages of peanut (Arachis hypogaea L.). Peanut Science 9, 35−40.Google Scholar

  • BOOTE, K. J., KETRING, D. L., 1990: Peanut. In: STEWART B. A., NIELSON D. R. (eds.), Irrigation of agricultural crops, 114-137. ASA-CSSA-SSSA, Madison.Google Scholar

  • BRADFORD, M., 1976: A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry 72, 248-254.Google Scholar

  • CASTILLO, F. I., PENEL, I., GREPPIN, H., 1984: Peroxidase release induced by ozone in Sedum album leaves. Plant Physiology 74, 846-851.Google Scholar

  • CELIKKOL-AKCAY, U., ERCAN, O., KAVAS, M., YILDIZ, L., YILMAZ, C., OKTEM, H. A., YUCEL, M., 2010: Drought-induced oxidative damage and antioxidant responses in peanut (Arachis hypogaea L.) seedlings. Plant Growth Regulation 61, 21-28.CrossrefGoogle Scholar

  • CHAITANYA, K. S. K., NAITHANI, S. C., 1994: Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorea robusta Gaertn. New Phytologist 126, 623-627.CrossrefGoogle Scholar

  • CHALLINOR, A. J., SLINGO, J. M., WHEELER, T. R., et al., 2003: Toward a combined seasonal weather and crop productivity forecasting system: determination of the working spatial scale. Journal of Applied Meteorology 42, 175-192.CrossrefGoogle Scholar

  • CHAVES, M. M., FLEXAS, J., PINHEIRO, C., 2009: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103, 551-560.Google Scholar

  • DHINDSA, R. S., PLUMB-DHINDSA, P., THORPE, T. A., 1981: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32, 93-101.CrossrefGoogle Scholar

  • DHRUVE, J. J., VAKHARIA, D. N., SHUKLA, Y. M., 2009: Role of benzyladenine on oxidative enzyme system in groundnut. Indian Journal of Agricultural Biochemistry 22, 98-101.Google Scholar

  • ERICE, G., LOUAHLIA, S., IRIGOYEN, J. J., SANCHEZ-DIAZ, M., AVICE, J. C., 2010: Biomass partitioning, morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Journal of Plant Physiology 167, 114-120.Google Scholar

  • FINI, A., GUIDI, L., FERRINI, F., BRUNETTI, C., FERDINANDOA, M. D., BIRICOLTI, S., POLLASTRI, S., CALAMAI, L., TATTINI, M., 2012: Drought stress has contrasting effects on antioxidant enzymes activity and phenylpropanoid biosynthesis in Fraxinus ornus leaves: An excess light stress affair? Journal of Plant Physiology 169, 929-939.Google Scholar

  • GOMEZ, K. A., GOMEZ, A. A., 1984: Statistical procedures for agriculture research. Willey, New York.Google Scholar

  • HEATH, R. L., PACKER, L., 1968: Photoperoxidation in isolated chloroplast. I. Kinetics and stoi chiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189-198.Google Scholar

  • HERNANDEZ, J. A., FERRER, M. A., JIMENEZ, A., BARCELO, A. R., SEVILLA, F., 2001: Antioxidant systems and O2-/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiology 127, 817-831. HISCOX, J. D., ISRAELSTAM, G. F., 1979: A method for extraction of chloroplast from leaf tissue without maceration. Canadian Journal of Botany 57, 1332-1334.CrossrefGoogle Scholar

  • HOREMANS, N., FOYER, C. H., POTTERS, G., ASARD, H., 2000: Ascorbate function and associated transport systems in plants. Plant Physiology and Biochemistry 38, 531-540.Google Scholar

  • JUBANY-MARI, T., MUNNE-BOSCH, S., ALEGRE, L., 2010: Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate. Plant Physiology and Biochemistry 48, 351-358.CrossrefGoogle Scholar

  • KHOLOVA, J., SAIRAM, R. K., MEENA, R. C., SRIVASTAVA, G. C. 2009: Response of maize genotypes to salinity stress in relation to osmolytes and metal-ions contents, oxidative stress and antioxidant enzymes activity. Biologia Plantarum 53, 249-256.Google Scholar

  • KNOX, J. P., DODGE, A. D., 1985: Singlet oxygen and plants. Phytochemistry 24, 889-896.CrossrefGoogle Scholar

  • LESSANI, H., MOJTAHEDI, M., 2002: Introduction to plant physiology (Translation). 6th Ed, 726. Tehran University Press, Iran.Google Scholar

  • LICHTENTHALER, H. K., WELLBURN, A. R., 1985: Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions 11, 591−592.Google Scholar

  • MAFAKHERI, A., SIOSEMARDEH, A., BAHRAMNEJAD, B., STRUIK, P. C., SOHRABI, Y., 2010: Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science 4, 580-585.Google Scholar

  • MENSAH, J. K., OBADONI, B. O., EROUTOR, P. G., ONOME-IRIEGUNA, F., 2006: Simulated flooding and drought effects on germination, growth and yield parameters of sesame (Sesamum indicum L.). African Journal of Biotechnology 5, 1249-1253.Google Scholar

  • MITTLER, R., 2002: Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7, 405-410.CrossrefGoogle Scholar

  • NAGESWARA RAO, R. C., TALWAR, H. S., WRIGHT, G. C., 2001: Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using chlorophyll meter. Journal of Agronomy and Crop Science 189, 175-182.Google Scholar

  • NAKANO, Y., ASADA, K., 1981: Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant and Cell Physiology 21, 1295-1307.Google Scholar

  • NAUTIYAL, P. C., RAVINDRA, V., RATHNAKUMAR, A. L., AJAY, B. C., ZALA, P. V., 2012: Genetic variations in photosynthetic rate, pod yield and yield components in Spanish peanut cultivars during three cropping seasons. Field Crops Research 125, 83-91.CrossrefGoogle Scholar

  • NOCTOR, G., FOYER, C., 1998: Ascorbate and glutathione: keeping active oxygen under control. Annual Reviews of Plant Physiology and Molecular Biology 49, 249-279.CrossrefGoogle Scholar

  • NOCTOR, G., GOMEZ, L., VANACKER, H., FOYER, C. H., 2002: Interaction between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. Journal of Experimental Botany 53, 1283-1308.Google Scholar

  • PATTANGUAL, W., MADORE, M., 1999: Water deficit effects on raffinose family oligosaccharide metabolism in Coleus. Plant Physiology 121, 998-993.Google Scholar

  • PRASAD, T. K., ANDERSON, M. D., STEWART, C. R., 1995: Localization and characterization of peroxidases in the mitochondria of chilling acclimated maize seedlings. Plant Physiology 108, 1597-1605.Google Scholar

  • RAO M. V., PALIYATH, G., ORMROD, D. P., MURR, D. P., WATKINS, C. B., 1997: Influence of salicylic acid on H2O2 production, oxidative stress and H2O2 metabolizing enzymes. Plant Physiology 115, 137-149. SAIRAM, R. K., SAXENA, D. C., 2005: Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science 184, 55-61.Google Scholar

  • SAIRAM, R. K., SRIVASTAVA, G. C., SAXENA, D. C., 2000: Increased antioxidant activity under elevated temperature: a mechanism of heat stress tolerance in wheat genotypes. Biologia Plantarum 43, 245-251.CrossrefGoogle Scholar

  • SAIRAM, R. K., DESHMUKH, P. S., SHUKLA, D. S., 1997: Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. Journal of Agronomy and Crop Science 178, 171-177.Google Scholar

  • SANTOS, I., ALMEIDA, J. M., 2011: Responses of plants at molecular, biochemical and ultrastructural levels as influenced by UV-B radiation. Advances in Plant Physiology 12, 1-30.Google Scholar

  • SCHWANZ, P., POLLE, A., 2001: Differential stress responses of antioxidative systems to drought in pedunculate oak (Quercus robur) and maritime pine (Pinus pineaster) grown under high CO2 concentrations. Journal of Experimental Botany 52, 133-143.Google Scholar

  • SHAO, H. B., CHU L. Y., LU, Z. H., KANG, C. M., 2008: Main antioxidants and redox signalling in higher plant cells. International Journal of Biological Sciences 44, 12-18.Google Scholar

  • SHARADA, P., NAIK, G. R., 2011: Physiological and biochemical responses of groundnut genotypes to drought stress. World Journal of Science and Technology 1, 60-66.Google Scholar

  • SHARIFI, P., AMIRNIA, R., MAJIDI, E., HADI, H., ROUSTAII, M., NAKHODA, B., ALIPOOR, H. M., MORADI, F., 2012: Relationship between drought stress and some antioxidant enzymes with cell membrane and chlorophyll stability in wheat lines. African Journal of Microbiology Research 6, 617-623.Google Scholar

  • SHARMA, P., DUBEY, R. S., 2005: Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation 46, 209-221.CrossrefGoogle Scholar

  • SINGH, A. L., NAKAR, R. N, GOSWAMI, N., KALARIYA, K. A., CHAKRABORTY, K., SINGH, M., 2013: Water deficit stress and its management in groundnuts. Advances in Plant Physiology, 14, 370−465.Google Scholar

  • SMITH, I. K., VIERHELLER, T. L. I., THORNE, C. A., 1988: Assay of glutathione reductase in crude tissue homogenates using 5, 5’-dithio bis (2-nitrobenzoic acid). Analytical Biochemistry 175, 408-413.Google Scholar

  • TAIZ, L., ZEIGER, E., 2006: Plant physiology, 4th ed. Sinauer Associates, Sunderland, Massachusetts.Google Scholar

  • WANG, F. Z., WANG, Q. B., KWON, S. Y., KWAK, S. S., SU, W. A., 2005: Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. Journal of Plant Physiology 162, 465-472.Google Scholar

  • WEATHERLEY, P. E., 1950: Studies in water relations of cotton plants. I. The field measurement of water deficit in leaves. New Phytologist 49, 81-87.Google Scholar

  • YOUNG, A. J., 1991: The photo-protective role of carotenoids in higher plants. Physiologia Plantarum 83, 702-708.Google Scholar

  • ZHU, J. K., 2002: Salt and drought stress signal transduction in plants. Annual Reviews of Plant Biology 53, 247-273. CrossrefGoogle Scholar

About the article

Published Online: 2015-04-07

Published in Print: 2015-03-01

Citation Information: Acta Botanica Croatica, Volume 74, Issue 1, Pages 123–142, ISSN (Online) 0365-0588, DOI: https://doi.org/10.1515/botcro-2015-0011.

Export Citation

© by Koushik Chakraborty. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Md. Hasanuzzaman, Lana Shabala, Tim J. Brodribb, Meixue Zhou, and Sergey Shabala
Functional Plant Biology, 2017, Volume 44, Number 2, Page 253
Kirankumar G. Patel, Viralkumar B. Mandaliya, Gyan P. Mishra, Jentilal R. Dobaria, and Radhakrishnan Thankappan
Acta Physiologiae Plantarum, 2016, Volume 38, Number 7
Maria Silva Darlene, Luciano de Souza Ferraz Rener, Vassoler Serrato Rodrigo, Soares de Melo Alberto, and Henrique Salvino Gadelha Meneses Carlos
African Journal of Agricultural Research, 2015, Volume 10, Number 42, Page 3987

Comments (0)

Please log in or register to comment.
Log in