[1]
N. Bourbaki
Éléments de mathématique. Chapitres 4 à 7,
Masson, Paris 1981.
Google Scholar
[2]
K. Buzzard,
Analytic continuation of overconvergent eigenforms,
J. Amer. Math. Soc. 16 (2003), no. 1, 29–55, (electronic).
CrossrefGoogle Scholar
[3]
K. Buzzard,
Computing weight 1 modular forms over and ,
preprint (2013), http://arxiv.org/abs/1205.5077.
[4]
K. Buzzard and R. Taylor,
Companion forms and weight one forms,
Ann. of Math. (2) 149 (1999), no. 3, 905–919.
CrossrefGoogle Scholar
[5]
F. Calegari and D. Geraghty,
Modularity lifting beyond the Taylor–Wiles method,
preprint (2012), http://arxiv.org/abs/1207.4224.
[6]
R. F. Coleman and B. Edixhoven,
On the semi-simplicity of the -operator on modular forms,
Math. Ann. 310 (1998), no. 1, 119–127.
Google Scholar
[7]
H. Darmon, F. Diamond and R. Taylor,
Fermat’s last theorem,
Elliptic curves, modular forms & Fermat’s last theorem (Hong Kong 1993),
International Press, Cambridge (1997), 2–140.
Google Scholar
[8]
P. Deligne and M. Rapoport,
Les schémas de modules de courbes elliptiques,
Modular functions of one variable. II (Antwerp 1972),
Lecture Notes in Math. 349,
Springer, Berlin (1973), 143–316.
Google Scholar
[9]
F. Diamond,
The Taylor–Wiles construction and multiplicity one,
Invent. Math. 128 (1997), no. 2, 379–391.
CrossrefGoogle Scholar
[10]
B. Edixhoven,
Comparison of integral structures on spaces of modular forms of weight two, and computation of spaces of forms mod 2 of weight one,
J. Inst. Math. Jussieu 5 (2006), no. 1, 1–34.
Google Scholar
[11]
T. Gee,
Automorphic lifts of prescribed types,
Math. Ann. 350 (2011), no. 1, 107–144.
CrossrefWeb of ScienceGoogle Scholar
[12]
A. Grothendieck,
Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I,
Publ. Math. Inst. Hautes Études Sci. 20 (1964), Paper No. 259.
Google Scholar
[13]
N. M. Katz,
p-adic properties of modular schemes and modular forms,
Modular functions of one variable. III (Antwerp, 1972),
Lecture Notes in Math. 350,
Springer, Berlin (1973), 69–190.
Google Scholar
[14]
N. M. Katz,
A result on modular forms in characteristic p,
Modular functions of one variable. V (Bonn 1976),
Lecture Notes in Math. 601,
Springer, Berlin (1977), 53–61.
Google Scholar
[15]
C. Khare and J.-P. Wintenberger,
Serre’s modularity conjecture. I,
Invent. Math. 178 (2009), no. 3, 485–504.
CrossrefGoogle Scholar
[16]
C. Khare and J.-P. Wintenberger,
Serre’s modularity conjecture. II,
Invent. Math. 178 (2009), no. 3, 505–586.
CrossrefGoogle Scholar
[17]
M. Kisin,
Moduli of finite flat group schemes, and modularity,
Ann. of Math. (2) 170 (2009), no. 3, 1085–1180.
CrossrefWeb of ScienceGoogle Scholar
[18]
M. Kisin,
The Fontaine–Mazur conjecture for ,
J. Amer. Math. Soc. 22 (2009), no. 3, 641–690.
Google Scholar
[19]
B. Mazur,
Modular curves and the Eisenstein ideal,
Publ. Math. Inst. Hautes Études Sci. 47 (1977), 33–186.
CrossrefGoogle Scholar
[20]
G. J. Schaeffer,
Hecke stability and weight 1 modular forms,
preprint (2014), http://arxiv.org/abs/1406.0408.
[21]
J. Shotton,
Local deformation rings and a Breuil–Mézard conjecture when ,
preprint (2013), http://arxiv.org/abs/1309.1600.
[22]
B. de Smit and H. W. Lenstra, Jr.,
Explicit construction of universal deformation rings,
Modular forms and Fermat’s last theorem (Boston 1995),
Springer, New York (1997), 313–326.
Google Scholar
[23]
A. Snowden,
Singularities of ordinary deformation rings,
preprint (2011), http://arxiv.org/abs/1111.3654.
[24]
W. Stein,
Modular forms, a computational approach,
Grad. Stud. Math. 79,
American Mathematical Society, Providence 2007.
Google Scholar
[25]
R. Taylor,
Automorphy for some l-adic lifts of automorphic mod l Galois representations. II,
Publ. Math. Inst. Hautes Études Sci. 108 (2008), 183–239.
CrossrefGoogle Scholar
[26]
R. Taylor and A. Wiles,
Ring-theoretic properties of certain Hecke algebras,
Ann. of Math. (2) 141 (1995), no. 3, 553–572.
CrossrefGoogle Scholar
[27]
A. Wiles,
Modular elliptic curves and Fermat’s last theorem,
Ann. of Math. (2) 141 (1995), no. 3, 443–551.
CrossrefGoogle Scholar
Comments (0)