Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio

IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

See all formats and pricing
More options …
Ahead of print


Further refinements of generalized numerical radius inequalities for Hilbert space operators

Monire Hajmohamadi / Rahmatollah Lashkaripour
  • Corresponding author
  • Department of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mojtaba Bakherad
Published Online: 2019-05-07 | DOI: https://doi.org/10.1515/gmj-2019-2023


In this paper, we show some refinements of generalized numerical radius inequalities involving the Young and Heinz inequality. In particular, we present


where Ti,Ai,Bi𝔹() (1in), f and g are nonnegative continuous functions on [0,) satisfying f(t)g(t)=t for all t[0,), p,r1, N, and


Keywords: Euclidean operator radius; Heinz means; numerical radius; positive operator; Young inequality

MSC 2010: 47A12; 47A63; 47A30


  • [1]

    O. Axelsson, H. Lu and B. Polman, On the numerical radius of matrices and its application to iterative solution methods, Linear Multilinear Algebra 37 (1994), no. 1–3, 225–238. CrossrefGoogle Scholar

  • [2]

    M. Bakherad, M. Krnić and M. S. Moslehian, Reverse Young-type inequalities for matrices and operators, Rocky Mountain J. Math. 46 (2016), no. 4, 1089–1105. Web of ScienceCrossrefGoogle Scholar

  • [3]

    M. Boumazgour and H. A. Nabwey, A note concerning the numerical range of a basic elementary operator, Ann. Funct. Anal. 7 (2016), no. 3, 434–441. CrossrefWeb of ScienceGoogle Scholar

  • [4]

    K. E. Gustafson and D. K. M. Rao, Numerical Range, Universitext, Springer, New York, 1997. Google Scholar

  • [5]

    M. Hajmohamadi, R. Lashkaripour and M. Bakherad, Some generalizations of numerical radius on off-diagonal part of 2×2 operator matrices, J. Math. Inequal. 12 (2018), no. 2, 447–457. Google Scholar

  • [6]

    P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Grad. Texts in Math. 19, Springer, New York, 1982. Google Scholar

  • [7]

    G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Math. Lib., Cambridge University, Cambridge, 1988. Google Scholar

  • [8]

    R. Kaur, M. S. Moslehian, M. Singh and C. Conde, Further refinements of the Heinz inequality, Linear Algebra Appl. 447 (2014), 26–37. CrossrefWeb of ScienceGoogle Scholar

  • [9]

    F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283–293. CrossrefGoogle Scholar

  • [10]

    F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl. 361 (2010), no. 1, 262–269. CrossrefWeb of ScienceGoogle Scholar

  • [11]

    M. S. Moslehian and M. Sattari, Inequalities for operator space numerical radius of 2×2 block matrices, J. Math. Phys. 57 (2016), no. 1, Article ID 015201. Google Scholar

  • [12]

    M. S. Moslehian, M. Sattari and K. Shebrawi, Extensions of Euclidean operator radius inequalities, Math. Scand. 120 (2017), no. 1, 129–144. CrossrefWeb of ScienceGoogle Scholar

  • [13]

    G. Popescu, Unitary invariants in multivariable operator theory, Mem. Amer. Math. Soc. 200 (2009), no. 941, 1–91. Google Scholar

  • [14]

    M. Sababheh and D. Choi, A complete refinement of Young’s inequality, J. Math. Anal. Appl. 440 (2016), no. 1, 379–393. CrossrefWeb of ScienceGoogle Scholar

  • [15]

    M. Sattari, M. S. Moslehian and T. Yamazaki, Some generalized numerical radius inequalities for Hilbert space operators, Linear Algebra Appl. 470 (2015), 216–227. Web of ScienceCrossrefGoogle Scholar

  • [16]

    A. Sheikhhosseini, M. S. Moslehian and K. Shebrawi, Inequalities for generalized Euclidean operator radius via Young’s inequality, J. Math. Anal. Appl. 445 (2017), no. 2, 1516–1529. Web of ScienceCrossrefGoogle Scholar

  • [17]

    T. Yamazaki, On upper and lower bounds for the numerical radius and an equality condition, Studia Math. 178 (2007), no. 1, 83–89. CrossrefGoogle Scholar

  • [18]

    A. Zamani, Some lower bounds for the numerical radius of Hilbert space operators, Adv. Oper. Theory 2 (2017), no. 2, 98–107. Web of ScienceGoogle Scholar

About the article

Received: 2016-09-29

Accepted: 2018-05-21

Published Online: 2019-05-07

Citation Information: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2019-2023.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in