Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Emerging Electric Power Systems

Editor-in-Chief: Sidhu, Tarlochan

Ed. by Khaparde, S A / Rosolowski, Eugeniusz / Saha, Tapan K / Gao, Fei

6 Issues per year


CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.186
Source Normalized Impact per Paper (SNIP) 2017: 0.248

Online
ISSN
1553-779X
See all formats and pricing
More options …
Volume 18, Issue 3

Issues

Demand-Side Contribution to Power System Frequency Regulation : -A Critical Review on Decentralized Strategies

Atieh Delavari / Innocent Kamwa
  • Hydro-Qubec Research Institute (IREQ), Chief of Power systems and Mathematics, Québec, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-07 | DOI: https://doi.org/10.1515/ijeeps-2016-0237

Abstract

Nowadays the contribution of smart load technologies to power system frequency regulation is spurred due to the increasing penetration of renewable energy resources. This paper presents a comprehensive and up-to-date critical review on different decentralized load control strategies. This includes a joint literature- as well as simulation-based investigation in order to scrutinize different decentralized frequency-based load modulation strategies through organizing a taxonomy table and performing different simulation scenarios. Furthermore, the effectiveness of different gain tuning procedures in each control action are scrutinized and compared in terms of frequency nadir and steady state error. The detailed simulation is performed using SimPowerSystem (SPS) toolbox, in phasor mode, on IEEE 39-bus New England test system.

Keywords: smart load; demand response; primary frequency response

References

  • 1.

    Dagle JE, Winiarski DW, Donnelly M. End-use load control for power system dynamic stability enhancement. Technical report Richland, WA: Pacific Northwest Lab., 1997.Google Scholar

  • 2.

    Molina-García A, Bouffard F, Kirschen DS. Decentralized demand-side contribution to primary frequency control. IEEE Trans Power Syst. 2011;26:411–9.CrossrefGoogle Scholar

  • 3.

    NERC. Balancing and frequency control. Technical report. NERC Resources Subcommittee 2013.Google Scholar

  • 4.

    Delavari A, Kamwa I. Simulation-based investigation of optimal demand-side primary frequency regulation. IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) 2016.Google Scholar

  • 5.

    Zhao C, Topcu U, Li N, Low S. Design and stability of load-side primary frequency control in power systems. IEEE Trans Autom Control. 2014;59:1177–89.CrossrefGoogle Scholar

  • 6.

    Rebours YG, Kirschen DS, Trotignon M, Rossignol S. A survey of frequency and voltage control ancillary services Part I: Technical features. IEEE Trans Power Syst. 2007;22:350–7.CrossrefGoogle Scholar

  • 7.

    Delavari A, Kamwa I. Virtual inertia-based load modulation for power system primary frequency regulation. Power and Energy Society General Meeting. IEEE 2017. (in press).

  • 8.

    Pandey SK, Mohanty SR, Kishor N. A literature survey on load–frequency control for conventional and distribution generation power systems. Renewable Sustainable Energy Rev. 2013;25:318–34.CrossrefGoogle Scholar

  • 9.

    Callaway DS, Hiskens IA. Achieving controllability of electric loads. Proc IEEE. 2011;99:184–99.CrossrefGoogle Scholar

  • 10.

    Strbac G. Demand side management: benefits and challenges. Energy Policy. 2008;36:4419–26.CrossrefGoogle Scholar

  • 11.

    Huang AQ, Crow ML, Heydt GT, Zheng JP, Dale SJ. The future renewable electric energy delivery and management (freedom) system: the energy internet. Proc IEEE. 2011;99:133–48.CrossrefGoogle Scholar

  • 12.

    Ulbig A, Borsche TS, Andersson G. Impact of low rotational inertia on power system stability and operation. arXiv preprint arXiv:1312.6435 2013.Google Scholar

  • 13.

    Biegel B, Westenholz M, Hansen LH, Stoustrup J, Andersen P, Harbo S. Integration of flexible consumers in the ancillary service markets. Energy. 2014;67:479–89.CrossrefGoogle Scholar

  • 14.

    Tielens P, Van Hertem D. Grid inertia and frequency control in power systems with high penetration of renewables. Young Researchers Symposium in Electrical Power Engineering, 6th ed.; Delft, The Netherlands, 16–17 April, 2012

  • 15.

    Delille G, François B, Malarange G. Dynamic frequency control support: a virtual inertia provided by distributed energy storage to isolated power systems. In: Innovative Smart Grid Technologies Conference Europe (ISGT Europe), PES, IEEE.2010;1–8.Google Scholar

  • 16.

    Dehghanpour K, Afsharnia S. Electrical demand side contribution to frequency control in power systems: a review on technical aspects. Renewable Sustainable Energy Rev. 2015;41:1267–76.CrossrefGoogle Scholar

  • 17.

    Palmer M, Tachibana M, Senjyu T, Funabashi T, Saber AY, Datta M. Grid stabilization with decentralized controllable loads using fuzzy control and droop characteristics. Int J Emerging Electr Power Syst. 2014;15:357–65.Google Scholar

  • 18.

    Yoza A, Uchida K, Yona A, Senju T. Optimal operation method of smart house by controllable loads based on smart grid topology. Int J Emerging Electr Power Syst. 2013;14:411–20.Google Scholar

  • 19.

    Nassor TS, Senjyu T, Yona A. Enhancement of voltage stability of dc smart grid during islanded mode by load shedding scheme. Int J Emerging Electr Power Syst. 2015;16:491–501.Google Scholar

  • 20.

    Surender Reddy S, Abhyankar A, Bijwe P. Co-optimization of energy and demand-side reserves in day-ahead electricity markets. Int J Emerging Electr Power Syst. 2015;16:195–206.Google Scholar

  • 21.

    Biegel B, Hansen LH, Andersen P, Stoustrup J. Primary control by on/off demand-side devices. IEEE Trans Smart Grid. 2013;4:2061–71.CrossrefGoogle Scholar

  • 22.

    Schweppe FC, Tabors RD, Kirtley JL, Outhred HR, Pickel FH, Cox AJ. Homeostatic utility control. IEEE Trans Power Apparatus Syst 1980;1151–63.Google Scholar

  • 23.

    Balijepalli VM, Pradhan V, Khaparde SA, Shereef RM. Review of demand response under smart grid paradigm. In: Innovative Smart Grid Technologies-India (ISGT India), IEEE 2011:236–43.Google Scholar

  • 24.

    Kamwa I, Grondin R, Asber D, Gingras J, Trudel G. Active-power stabilizers for multimachine power systems: challenges and prospects. IEEE Trans Power Syst. 1998;13:1352–8.CrossrefGoogle Scholar

  • 25.

    Black JW, Ilic M. Demand-based frequency control for distributed generation. Power Engineering Society Summer Meeting, volume 1 IEEE. 2002;427–432.Google Scholar

  • 26.

    Trudnowski D, Donnelly M, Lightner E. Power-system frequency and stability control using decentralized intelligent loads. Transmission and Distribution Conference and Exhibition, IEEE. 2006;1453–9.Google Scholar

  • 27.

    Kirby BJ. Spinning reserve from responsive loads. Department of Energy, 2003.Google Scholar

  • 28.

    Donnelly M, Trudnowski D, Mattix S, Dagle J. Autonomous demand response for primary frequency regulation, Technical report, PNNL-21152. Richland, WA: Pacific Northwest National Laboratory, 2012. .Google Scholar

  • 29.

    Bertoldi P, Atanasiu B. Electricity consumption and efficiency trends in the enlarged European Union. IES–JRC. European Union: 2007.Google Scholar

  • 30.

    Arteconi A, Hewitt N, Polonara F. State of the art of thermal storage for demand-side management. Appl Energy. 2012;93:371–89.CrossrefGoogle Scholar

  • 31.

    Donnelly M, Boyd P, Lu N, Huang Z. Grid friendly appliance (GFA) controller development. Electric Distribution Transformation Program Review FY04 2003.Google Scholar

  • 32.

    Lu N, Hammerstrom DJ. Design considerations for frequency responsive grid friendly tm appliances. Transmission and Distribution Conference and Exhibition, IEEE. 2006;647–652.Google Scholar

  • 33.

    QDR Q. Benefits of demand response in electricity markets and recommendations for achieving them,Technical Report. Washington, DC: US Department Energy, 2006. .Google Scholar

  • 34.

    Soliman SA, Helal I, Youssef A. Electric load management using electricity tariff algorithm. Int J Emerging Electr Power Syst., 2007, vol. 8, no 5, p. 3.Google Scholar

  • 35.

    Chakir M, Kamwa I, Le Huy H. Centralized-decentralized control of responsive demand to enable primary and 10-min reserves. EIC Climate Change Technology Conference, at Montral, QC, Canada, 2015:1–12.

  • 36.

    Andreasson M, Dimarogonas DV, Johansson KH, Sandberg H. Distributed vs. centralized power systems frequency control. 12th European Control Conference, ECC 2013; Zurich; Switzerland; 17 July 2013 through 19 July 2013. 2013;2013:3524–3529.Google Scholar

  • 37.

    Belhomme R, Asua RC, Valtorta G, Paice A, Bouffard F, Rooth R, et al. Smart Grids for Distribution. IET-CIRED. CIRED Seminar, IET. ADDRESS-Active demand for the smart grids of the future. 2008:1–4.Google Scholar

  • 38.

    Peeters E, Six D, Hommelberg M, Belhomme R, Bouffard F. The ADDRESS project: an architecture and markets to enable active demand. Energy Market. 6th International Conference on the European, IEEE. 2009;1–5.Google Scholar

  • 39.

    Peeters E, Belhomme R, C Batlle, F Bouffard, Karkkainen S, Six D, et al. ADDRESS: scenarios and architecture for active demand development in the smart grids of the future. Electricity Distribution-Part 1. 20th International Conference and Exhibition on, IET. 2009;1–4.Google Scholar

  • 40.

    Donnelly M, Harvey D, Munson R, Trudnowski D. Frequency and stability control using decentralized intelligent loads: Benefits and pitfalls. Power and Energy Society General Meeting, IEEE 2010:1–6.

  • 41.

    Kalsi K, Zhang W, Lian J, Marinovici LD, Moya C, Dagle JE. Distributed smart grid asset control strategies for providing ancillary services, PNNL-22875, 2013.Google Scholar

  • 42.

    Kalsi K, Elizondo MA, Lian J, Zhang W, Marinovici LD, Calderon CM. Loads as a resource: Frequency responsive demand, Technical report, PNNL-23764. Pacific Northwest National Laboratory; Richland, WA, 2014.

  • 43.

    Zhao C, Topcu U, Low SH. Fast load control with stochastic frequency measurement. Power and Energy Society General Meeting, IEEE 2012:1–8.Google Scholar

  • 44.

    Zhao C, Topcu U, Low SH. Optimal load control via frequency measurement and neighborhood area communication. IEEE Trans Power Syst. 2013;28:3576–3587.CrossrefGoogle Scholar

  • 45.

    Jahromi A, Bouffard F. Contingency-type reserve leveraged through aggregated thermostatically-controlled loads—Part I: Characterization and control. IEEE Transactions on Power Systems 31.3, 2016: 1972–1980Google Scholar

  • 46.

    Jahromi A, Bouffard F. Contingency-type reserve leveraged through aggregated thermostatically-controlled loads—Part II: Characterization and control. IEEE Transactions on Power Systems 31.3, 2016: 1981–1989.Google Scholar

  • 47.

    Lian J, Hansen J, Marinovici LD, Kalsi K. Power and Energy Society General Meeting (PESGM), 2016, IEEE 2016:1–5. Hierarchical decentralized control strategy for demand-side primary frequency response.Google Scholar

  • 48.

    Dong L. Decentralized load frequency control for an interconnected power system with nonlinearities. American Control Conference (ACC) 2016, IEEE. 2016;5915–5920.Google Scholar

  • 49.

    Muñoz-Benavente I, Gómez-Lázaro E, García-Sánchez T, Vigueras-Rodríguez A, Molina-García A. Implementation and assessment of a decentralized load frequency control: Application to power systems with high wind energy penetration. Energies. 2017;10:151.CrossrefGoogle Scholar

  • 50.

    Kamwa I, Grondin R, Asber D, Gingras J, Trudel G. Large-scale active-load modulation for angle stability improvement. IEEE Trans Power Syst. 1999;14:582–590.CrossrefGoogle Scholar

  • 51.

    Moya C, Zhang W, Lian J, Kalsi K. A hierarchical framework for demand-side frequency control. American Control Conference (ACC), IEEE. 2014;52–57.Google Scholar

  • 52.

    Yu X, Tomsovic K. Application of linear matrix inequalities for load frequency control with communication delays. IEEE Trans Power Syst. 2004;19:1508–1515.CrossrefGoogle Scholar

  • 53.

    Zimmerman RD, Murillo-Sánchez CE, Gan D. Matpower: a Matlab power system simulation package Manual. Power Systems Engineering Research Center; Ithaca, NY, 1997.

About the article

Published Online: 2017-04-07


Citation Information: International Journal of Emerging Electric Power Systems, Volume 18, Issue 3, 20160237, ISSN (Online) 1553-779X, DOI: https://doi.org/10.1515/ijeeps-2016-0237.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Atieh Delavari and Innocent Kamwa
IEEE Transactions on Power Systems, 2018, Volume 33, Number 1, Page 1013
[3]
Yi Tang, Qian Chen, Jia Ning, Qi Wang, Shuhai Feng, and Yaping Li
International Journal of Electrical Power & Energy Systems, 2018, Volume 97, Page 165

Comments (0)

Please log in or register to comment.
Log in