Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Materials Science-Poland


IMPACT FACTOR 2018: 0,918
5-year IMPACT FACTOR: 0,916



CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Open Access
Online
ISSN
2083-134X
See all formats and pricing
More options …

Experimental and theoretical study of 1, 4-naphthoquinone based dye in dye-sensitized solar cells using ZnO photoanode

Dnyaneshwar Shinde / Popat Tambade / Habib Pathan / Kisan Gadave
Published Online: 2018-03-20 | DOI: https://doi.org/10.1515/msp-2017-0088

Abstract

A dye-sensitized solar cell (DSSC) was assembled using a dye 4-(3-chloro-1, 4-dioxo-1, 4-dihydronaphthalen-2-ylamino) benzoic acid with ZnO as a photoanode. It was synthesized using 2, 3-dichloro 1, 4-naphthoquinone and p-amino benzoic acid. The spectral features of the dye were analyzed in ethanol using experimental and computational methods. The theoretical investigations revealed that the synthesized dye may act as a sensitizer in DSSCs. The photoelectrochemical performance was tested under direct sunlight using a sandwich type DSSC. The photovoltaic data of the dye adsorbed on ZnO films indicated thepower conversion efficiency of 1.07 % under sunlight with a light intensity of 39 mW·cm-2.

Keywords: dye-sensitized solar cell; ZnO; naphthoquinone; density functional theory; TDDFT

References

  • [1] O’REGAN B., GRÄTZEL M.A., Nature, 353 (1991), 737.Google Scholar

  • [2] KAY A., GRÄTZEL M., J. Phys. Chem., 97 (1993), 6272.CrossrefGoogle Scholar

  • [3] ROY M.S., BALRAJU P., KUMAR M., SHARMA G.D., Sol. Energ. Mat. Sol. C., 92 (2008), 909.CrossrefGoogle Scholar

  • [4] CHAUHAN R., KUMAR A., CHAUDHARY R.P., J. Sol- Gel Sci. Technol., 63 (2012), 546.Google Scholar

  • [5] BASU K., BENETTI D., ZHAO H., JIN L., VETRONE F., VOMIERO A., ROSEI F., Sci. Rep., 6 (2016), 23312, DOI: 10.1038/serp23312.CrossrefGoogle Scholar

  • [6] SHANG G., WU J., HUANG M., LIN J., LAN Z., HUANG Y., FAN L., J. Phys. Chem. C, 116 (2012), 20140.Google Scholar

  • [7] ELSAYED E.M., SHALAN A.E., RASHAD M.M., J. Mater. Sci. Mater. Electron., 25 (2014), 3412.CrossrefGoogle Scholar

  • [8] KATOH R., HUIJSER A., HARA K., SAVENIJE T.J., SIEBBELES L., J. Phys. Chem. C, 111 (2007), 10741.Google Scholar

  • [9] PARK K., ZHANG Q., MYERS D., CAO G., ACS Appl. Mater. Interfaces, 5 (2013), 1044.CrossrefGoogle Scholar

  • [10] CHOU T.P., ZHANG Q., RUSSO B., FRYXELL G.E., CAO G., J. Phys. Chem. C, 111 (2007), 6296.Google Scholar

  • [11] CHIBA Y., ISLAM A., WATANABE Y., KOMIYA R., KOIDE N., HAN L., Jpn. J. Appl. Phys., 45 (2006), L638.Google Scholar

  • [12] WANG Z., KAWAUCHI H., KASHIMA T., ARAKAWA H., Coord. Chem. Rev., 248 (2004), 1381.Google Scholar

  • [13] HUG H., BADER M., MAIR P., GLATZEL T., Appl. Energ., 115 (2014), 216.Google Scholar

  • [14] CALOGERO G., DI MARCO G., Sol. Energ. Mat. Sol. C., 92 (2008), 1341.Google Scholar

  • [15] TRIPATHI M., UPADHYAY R., PANDEY A., Appl. Sol. Energ., 49 (2013), 54.Google Scholar

  • [16] RANJITHA S., AROULMOJI V., MOHR T., ANBARASAN P.M., RAJARAJAN G., Acta Phys. Pol. A, 126 (2014), 833.Google Scholar

  • [17] SURI P., PANWAR M., MEHRA R.M., Mater. Sci.- Poland, 25 (2007), 137.Google Scholar

  • [18] KIM S., LEE J.K., KANG S.O., KO J., YUM J.H., FANTACCI S., DE ANGELIS F., CENSO DI D., NAZEERUDDIN M.K., GRÄTZEL M., J. Am. Chem. Soc., 128 (2006), 16701.Google Scholar

  • [19] IRFAN A., Optik, 125 (2014), 4825.Google Scholar

  • [20] BATNIJI A.Y., MORJAN R., ABDEL-LATIF M.S., EL-AGEZ T.M., TAYA S.A., EL-GHAMRI H.S., Turk. J. Phys., 38 (2014), 86.Google Scholar

  • [21] EL-AGEZ T.M., TAYA S.A., ELREFI K.S., ABDELLATIF M.S., Opt. Appl., 44 (2014), 345.Google Scholar

  • [22] GOMEZ-ORTIZ N.M, VAZQUEZ-MALDONADO I.A, PEREZ-ESPADAS A.R., MENA-REJON G.J., AZAMAR-BARRIO J.A, OSKAM G.G, Sol. Energ. Mat. Sol. C., 94 (2010), 40.Google Scholar

  • [23] ZHOU H., WU L., GAO Y., MA T., J. Photoch. Photobiol. A, 219 (2011), 188.Google Scholar

  • [24] WONGCHAREE K., MEEYOOA V., CHAVADEJ S., Sol. Energ. Mat. Sol. C., 91 (2007), 566.CrossrefGoogle Scholar

  • [25] YAMAZAKI E., MURAYAMA M., NISHIKAWA N., HASHIMOTO N., SHOYAMA M., KURITA O., Sol. Energy, 81 (2007), 512.Google Scholar

  • [26] HAO S., WU J., HUANG Y., LIN J., Sol. Energy, 80 (2006), 209.Google Scholar

  • [27] EL-GHAMRI H.S., EL-AGEZ T.M., TAYA S.A., ABDEL-LATIF M.S., BATNIJI A.Y., Mater. Sci.- Poland, 32 (2014), 547.Google Scholar

  • [28] TAYA S.A., EL-AGEZ T.M., ABDEL-LATIF M.S., EL-GHAMRI H.S., BATNIJI A.Y., EL-SHEIKH I.R., Int. J. Renew. Energy Res., 4 (2014), 384.Google Scholar

  • [29] TEESETSOPON P., KUMAR S., DUTTA J., Int. J. Electrochem. Sc., 7 (2012), 4988.Google Scholar

  • [30] ZHANG Q., DANDENEAU C.S., ZHOU X., CAO G., Adv. Mater., 21 (2009), 4087.Google Scholar

  • [31] LAI M.H., LEE M.W., WANG G., TAI M.F., Int. J. Electrochem. Sc., 6 (2011), 2122.Google Scholar

  • [32] JUNG M., CHU M., J. Mater. Chem. C, 2 (2014), 6675.Google Scholar

  • [33] BAXTER J.B., WALKER A.M., VAN OMMERING K., AYDIL E.S., Nanotechnology, 17 (2006), S304.CrossrefGoogle Scholar

  • [34] RANJUSHA R., LEKHA P., SUBRAMANIAN K.R.V., NAIR SHANTIKUMAR V., BALAKRISHNAN A., J. Mater. Sci. Technol., 27 (2011), 961.CrossrefGoogle Scholar

  • [35] HAN J., FAN F., XU C., LIN S., WEI M., DUAN X., WANG Z.L., Nanotechnology, 21 (2010), 405203.CrossrefGoogle Scholar

  • [36] HONGSITH N., CHOOPUN S., Chiang Mai J. Sci., 37 (2010), 48.Google Scholar

  • [37] NAZEERUDDIN M., DE ANGELIS F., FANTACCI S., SELLONI A., VISCARDI G., LISKA P., ITO S., TAKERU B., GRÄTZEL M., J. Am. Chem. Soc., 127 (2005), 16835.Google Scholar

  • [38] PATIL A.B., PATIL K.R., PARDESHI S.K., J. Solid State Chem., 184 (2011), 3273.Google Scholar

  • [39] PAWAR R.A., SHINDE D.R., TAMBADE P.S., Desalin. Water Treat., 57 (2016), 16514.Google Scholar

  • [40] SATHESHKUMAR A., ELANGO K.P., Spectrochim. Acta A, 98 (2012), 378.Google Scholar

  • [41] MITAL A., SONAWANE M., BINDAL S., MAHLAVAT S., NEGI V., Pharm. Chem., 2 (2010), 63.Google Scholar

  • [42] SANTHANAMOORTHI N., LO C., JIANG J., J. Phys. Chem. Lett., 4 (2013), 524.CrossrefGoogle Scholar

  • [43] DE ANGELIS F., FANTACCI S., SELLONI A., Nanotechnology, 19 (2008), 424002.CrossrefGoogle Scholar

  • [44] GRANOVSKY A.A., PC Gamess/Firefly version 7.1 G, http://classic.chem.msu.su/gran/Gamess/index.Google Scholar

  • [45] BAZARGAN M.H., MALEKSHAHI BYRANVAND M., KHARAT A.N., Chalcogenide Lett., 7 (2010), 515.Google Scholar

  • [46] HUANG Z., LIU X., LI K., LI D., LUO Y., LI H., SONG W., CHEN L., MENG Q., Electrochem. Commun., 9 (2007), 596.Google Scholar

  • [47] ABDEL-LATIF M.S., ABUIRIBAN M.B., EL-AGEZ T.M., TAYA S.A., Int. J. Renew. Energ. Res., 5 (2015), 294.Google Scholar

  • [48] MA T., INOUE K., NOMA H., YAO K., ABE E., J. Photoch. Photobiol. A, 152 (2002), 207.Google Scholar

  • [49] ALLOUCHE A.-R., Gabedit, Version 2.1.8; 2007.Google Scholar

  • [50] KHADTARE S.S., WARE A.P., SALUNKE-GAWALI S., JADKAR S.R., PINGALE S.S., PATHAN H.M., RSC Adv. 5 (2015), 17647.Google Scholar

  • [51] SONG J., XU J., B. Korean Chem. Soc., 34 (2013), 3211.CrossrefGoogle Scholar

  • [52] WANG X., WANG L., WANG Z., WANG Y., TAMAI N., HONG Z., KIDO J., J. Phys. Chem. C, 117 (2013), 804.Google Scholar

  • [53] EITHIRAJ R.D., GEETHALAKSHMI K.R., Chem. Phys. Lett., 585 (2013), 138.Google Scholar

  • [54] RADWAN I.M., TAYA S.A., EL-AGEZ T.M., ABDELLATIF M.S., GHAMRI H.S., Acta Phys. Pol. A, 130 (2016), 795.Google Scholar

  • [55] ANAND M., SURESH S., Adv. Nat. Sci. Nanosci. Nanotechnol., 6 (2015), 035008.Google Scholar

  • [56] LIU J., LIU B., TANG Y., ZHANG W., WU W., XIE Y., ZHU W., J. Mater. Chem. C, 3 (2015), 11144.Google Scholar

  • [57] BATNIJI A., ABDEL-LATIF M.S., EL-AGEZ T.M., TAYA S.A., GHAMRI H., J. Theor. Appl. Phys., 10 (2016), 265.Google Scholar

  • [58] TAYA S.A., EL-AGEZ T.M., ABDEL-LATIF M.S., GHAMRI H., BATNIJI A., TABAZA W.A., J. Nanoelectron. Phys., 8 (2016), 01026.Google Scholar

  • [59] ZHANG X., CHEN L., LI X., MAO J., WU W., ÅGREN H., HUA J., J. Mater. Chem. C, 2 (2014), 4063.Google Scholar

  • [60] IRAJ M., KOLAHDOUZ M., ASL-SOLEIMANI E., ESMAILI E., KOLAHDOUZ Z., J. Mater. Sci. Mater. El., 27 (2016), 6496.CrossrefGoogle Scholar

About the article

Received: 2016-11-23

Accepted: 2017-10-03

Published Online: 2018-03-20


Citation Information: Materials Science-Poland, Volume 35, Issue 4, Pages 746–754, ISSN (Online) 2083-134X, DOI: https://doi.org/10.1515/msp-2017-0088.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Entidhar Alkuam, Emad Badradeen, and Grégory Guisbiers
ACS Omega, 2018, Volume 3, Number 10, Page 13433

Comments (0)

Please log in or register to comment.
Log in