Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Nanophotonics

Editor-in-Chief: Sorger, Volker


IMPACT FACTOR 2018: 6.908
5-year IMPACT FACTOR: 7.147

CiteScore 2018: 6.72

In co-publication with Science Wise Publishing

Open Access
Online
ISSN
2192-8614
Alle Formate und Preise
Weitere Optionen …
Band 1, Heft 3-4

Hefte

Physics of the zero- photonic gap: fundamentals and latest developments

Lei Zhou
  • Korrespondenzautor
  • State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Physics Department, Fudan University, Shanghai 200433, China
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Zhengyong Song
  • State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Physics Department, Fudan University, Shanghai 200433, China
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Xueqin Huang
  • Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ C.T. Chan
  • Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
Online erschienen: 06.12.2012 | DOI: https://doi.org/10.1515/nanoph-2012-0020

Abstract

A short overview is presented on the research works related to the zero- gap, which appears as the volume-averaged refraction index vanishes in photonic structures containing both positive and negative-index materials. After introducing the basic concept of the zero- gap based on both rigorous mathematics and numerical simulations, the unique properties of such a band gap are discussed, including its robustness against weak disorder, wide-incidence-angle operation and scaling invariance, which do not belong to a conventional Bragg gap. We then describe the simulation and experimental verifications on the zero- gap and its extraordinary properties in different frequency domains. After that, the unusual photonic and physical effects discovered based on the zero- gap and their potential applications are reviewed, including beam manipulations and nonlinear effects. Before concluding this review, several interesting ideas inspired from the zero- gap works will be introduced, including the zero-phase gaps, zero-permittivity and zero-permeability gaps, complete band gaps, and zero-refraction-index materials with Dirac-Cone dispersion.

Keywords: left-handed materials; meta materials; photonic band gaps; photonic crystals

Artikelinformationen

Corresponding author Edited by Nader Engheta, University of Pennsylvania, Philadelphia, Pennsylvania, USA


Erhalten: 07.07.2012

Angenommen: 01.11.2012

Online erschienen: 06.12.2012

Erschienen im Druck: 01.12.2012


Quellenangabe: Nanophotonics, Band 1, Heft 3-4, Seiten 181–198, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2012-0020.

Zitat exportieren

©2012 by Science Wise Publishing & De Gruyter Berlin Boston.Get Permission

Zitierende Artikel

Hier finden Sie eine Übersicht über alle Crossref-gelisteten Publikationen, in denen dieser Artikel zitiert wird. Um automatisch über neue Zitierungen dieses Artikels informiert zu werden, aktivieren Sie einfach oben auf dieser Seite den „E-Mail-Alert: Neu zitiert“.

[1]
Bipin K Singh, Ashish Bijalwan, Praveen C Pandey, and Vipul Rastogi
Engineering Research Express, 2019, Jahrgang 1, Nummer 2, Seite 025004
[2]
Jiancun Zhao, Meng Qiu, Xiaochang Yu, Xiaoming Yang, Wei Jin, Dangyuan Lei, and Yiting Yu
Advanced Optical Materials, 2019, Seite 1900646
[3]
R.F. Barros, E. Reyes-Gómez, L.E. Oliveira, and A. Latgé
Superlattices and Microstructures, 2017
[4]
Iñigo Liberal and Nader Engheta
Nature Photonics, 2017, Jahrgang 11, Nummer 3, Seite 149
[5]
Francisco J Rodríguez-Fortuño and Anatoly V Zayats
Light: Science & Applications, 2016, Jahrgang 5, Nummer 1, Seite e16022
[6]
E. Reyes-Gómez, S.B. Cavalcanti, and L.E. Oliveira
Superlattices and Microstructures, 2016, Jahrgang 90, Seite 1
[7]
Bipin K. Singh, Ashutosh K. Dikshit, Khem B. Thapa, and Praveen C. Pandey
Journal of Modern Optics, 2016, Jahrgang 63, Nummer 9, Seite 826
[8]
Run Hu, Bin Xie, Jinyan Hu, Qi Chen, and Xiaobing Luo
EPL (Europhysics Letters), 2015, Jahrgang 111, Nummer 5, Seite 54003
[9]
Jie Luo, Zhi Hong Hang, C. T. Chan, and Yun Lai
Laser & Photonics Reviews, 2015, Jahrgang 9, Nummer 5, Seite 523
[10]
Alireza Aghajamali, Tannaz Alamfard, and Mozhgan Hayati
Optik - International Journal for Light and Electron Optics, 2015, Jahrgang 126, Nummer 21, Seite 3158
[11]
Shiwei Tang, Baocheng Zhu, Min Jia, Qiong He, Shulin Sun, Yongfeng Mei, and Lei Zhou
Physical Review B, 2015, Jahrgang 91, Nummer 17
[12]
A. M. Mahmoud and N. Engheta
Faraday Discuss., 2015, Jahrgang 178, Seite 37
[13]
Ahmed M. Mahmoud and Nader Engheta
Nature Communications, 2014, Jahrgang 5, Seite 5638
[15]
Alireza Aghajamali, Tannaz Alamfard, and Mahmood Barati
Physica B: Condensed Matter, 2014, Jahrgang 454, Seite 170
[16]
Ying Wu and Jichun Li
Applied Physics Letters, 2013, Jahrgang 102, Nummer 18, Seite 183105

Kommentare (0)