[1]

Mahon B. How Maxwell’s equations came to light. Nat Photon 2015;9:2–4. CrossrefGoogle Scholar

[2]

Pedrotti FL, Pedrotti LM, Pedrotti LS. Introduction to optics. Cambridge, UK, Cambridge University Press, 2018. Google Scholar

[3]

Saleh BEA, Teich MC. Fundamentals of photonics. Hoboken, NJ, USA, Wiley, 2007. Google Scholar

[4]

Garmire E. Nonlinear optics in daily life. Opt Express 2013;21:30533–44. Google Scholar

[5]

Hecht J. How the laser launched nonlinear optics. Opt Photon News 2010;21:34–40. CrossrefGoogle Scholar

[6]

Masalov AV, Chizhikova ZA. S I Vavilov and nonlinear optics. Phys-Usp 2011;54:1257–83. CrossrefGoogle Scholar

[7]

Franken PA, Hill AE, Peters CW, Weinreich G. Generation of optical harmonics. Phys Rev Lett 1961;7:118–9. CrossrefGoogle Scholar

[8]

Boyd RW. Nonlinear optics. Cambridge, USA, Academic Press, 2008. Google Scholar

[9]

Del’Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R, Kippenberg TJ. Optical frequency comb generation from a monolithic microresonator. Nature 2007;450:1214–7. CrossrefPubMedGoogle Scholar

[10]

Panoiu NC, Sha WEI, Lei DY, Li G-C. Nonlinear optics in plasmonic nanostructures. J Opt 2018;20:083001. CrossrefGoogle Scholar

[11]

Savchenkov AA, Matsko AB, Maleki L. On frequency combs in monolithic resonators. Nanophotonics 2016;5:363–91. Google Scholar

[12]

Wu J, Xu X, Nguyen TG, et al. RF photonics: an optical microcombs’ perspective. IEEE J Sel Top Quantum Electron 2018;24:6101020. Google Scholar

[13]

Magidson V, Khodjakov A. Circumventing photodamage in live-cell microscopy. Methods Cell Biol 2013;114:545–60. PubMedCrossrefGoogle Scholar

[14]

Wäldchen S, Lehmann J, Klein T, van de Linde S, Sauer M. Light-induced cell damage in live-cell super-resolution microscopy. Sci Rep 2015;5:15348. CrossrefPubMedGoogle Scholar

[15]

Smith AW, Braslau N. Observation of an optical difference frequency. J Appl Phys 1963;34:2105–6. CrossrefGoogle Scholar

[16]

Levenson MD, Pershan PS, Mazur E, Shen YR, eds. Resonances: A volume in honor of the 70th birthday of Nicolaas Bloembergen. Singapore, World Scientific, 1990. Google Scholar

[17]

Hakuta K, Suzuki M, Katsuragawa M, Li JZ. Self-induced phase matching in parametric anti-stokes stimulated Raman scattering. Phys Rev Lett 1997;79:209–12. CrossrefGoogle Scholar

[18]

Katsuragawa M, Liang JQ, Bakuta K. Nonlinear optics with incoherent light. Conference Digest: 2000 International Quantum Electronics Conference, Nice, France, 2000. Google Scholar

[19]

Picozzi A. Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics. Opt Express 2007;15:9063–83. PubMedCrossrefGoogle Scholar

[20]

Dylov DV. Coherent-incoherent phenomena in nonlinear optics and imaging. PhD thesis. Princeton University, USA, 2010. Google Scholar

[21]

Maksymov IS, Miroshnichenko AE. Active control over nanofocusing with nanorod plasmonic antennas. Opt Express 2011;19:5888–94. PubMedCrossrefGoogle Scholar

[22]

Zhang J, MacDonald KF, Zheludev NI. Controlling light-with-light without nonlinearity. Light Sci Appl 2012;1:e18. CrossrefGoogle Scholar

[23]

Arahira S, Murai H. Wavelength conversion of incoherent light by sum-frequency generation. Opt Express 2014;22:12944–61. CrossrefPubMedGoogle Scholar

[24]

Kiethe J, Heuer A, Jechow A. Second-order coherence properties of amplified spontaneous emission from a high-power tapered superluminescent diode. Laser Phys Lett 2017;14:086201. CrossrefGoogle Scholar

[25]

Kurzke H, Kiethe J, Heuer A, Jechow A. Frequency doubling of incoherent light from a superluminescent diode in a periodically poled lithium niobate waveguide crystal. Laser Phys Lett 2017;14:055402. CrossrefGoogle Scholar

[26]

Stokes LF. Coupling light from incoherent sources to optical waveguides. IEEE Circuits and Devices Mag 1994;10:46–7. CrossrefGoogle Scholar

[27]

Hamilton MF, Blackstock DT. Nonlinear acoustics. Cambridge, MA, USA, Academic Press, 1998. Google Scholar

[28]

Rudenko OV. Giant nonlinearities in structurally inhomogeneous media and the fundamentals of nonlinear acoustic diagnostic technique. Phys-Usp 2006;49:69–87. CrossrefGoogle Scholar

[29]

Diels J-C, Rudolph W. Ultrashort laser phenomena: fundamentals, techniques, and applications on a femtosecond time scale. Cambridge, MA, USA, Academic Press, 1996. Google Scholar

[30]

Siegman AE. Lasers. Herndon, VA, USA, University Science Books, 1986. Google Scholar

[31]

Torres-Company V, Weiner AM. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev 2014;8:368–93. CrossrefGoogle Scholar

[32]

Faist J, Villares G, Scalari G, et al. Quantum cascade laser frequency combs. Nanophotonics 2016;5:272–91. Google Scholar

[33]

Temprana E, Myslivets E, Kuo BP, et al. Overcoming Kerr-induced capacity limit in optical fiber transmission. Science 2015;348:1445–8. PubMedCrossrefGoogle Scholar

[34]

Thorpe MJ, Balslev-Clausen D, Kirchner MS, Ye J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt Express 2008;16:2387–97. CrossrefPubMedGoogle Scholar

[35]

Cherenkov AV, Kondratiev NM, Lobanov VE, Shitikov AE, Skryabin DV, Gorodetsky ML. Raman-Kerr frequency combs in microresonators with normal dispersion. Opt Express 2017;25:31148–58. PubMedCrossrefGoogle Scholar

[36]

Xiong H, Si L-G, Lü X-Y, Wu Y. Optomechanically induced sum sideband generation. Opt Express 2016;24:5773–83. CrossrefPubMedGoogle Scholar

[37]

Xiong H, Si L-G, Lü X-Y, Yang X, Wu Y. Nanosecond-pulse-controlled higher-order sideband comb in a GaAs optomechanical disk resonator in the non-perturbative regime. Ann Phys 2014;349:43–54. CrossrefGoogle Scholar

[38]

Reed EJ, Soljaĉić M, Joannopoulos JD. Color of shock waves in photonic crystals. Phys Rev Lett 2003;90:203904. PubMedCrossrefGoogle Scholar

[39]

Reed EJ, Soljaĉić M, Joannopoulos JD. Reversed Doppler effect in photonic crystals. Phys Rev Lett 2003;91:133901. CrossrefPubMedGoogle Scholar

[40]

Ta’eed V, Baker NJ, Fu L, et al. Ultrafast all-optical chalcogenide glass photonic circuits. Opt Express 2007;15:9205–21. PubMedCrossrefGoogle Scholar

[41]

Yeom D-I, Mägi EC, Lamont MRE, Roelens MAF, Fu L, Eggleton BJ. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Opt Lett 2008;33:660–2. PubMedCrossrefGoogle Scholar

[42]

Salem R, Foster MA, Turner AC, Geraghty DF, Lipson M, Gaeta AL. Signal regeneration using low-power four-wave mixing on silicon chip. Nat Photon 2008;2:35–8. CrossrefGoogle Scholar

[43]

Leuthold J, Koos C, Freude W. Nonlinear silicon photonics. Nat Photon 2010;4:535–44. CrossrefGoogle Scholar

[44]

Aitchison J, Hutchings D, Kang J, Stegeman G, Villeneuve A. The nonlinear optical properties of AlGaAs at the half band gap. IEEE J Quantum Electron 1997;33:341–8. CrossrefGoogle Scholar

[45]

Van V, Ibrahim T, Absil P, Johnson F, Grover R, Ho P-T. Optical signal processing using nonlinear semiconductor microring resonators. IEEE J Sel Top Quantum Electron 2002;8:705–13. CrossrefGoogle Scholar

[46]

Lippitz M, van Dijk MA, Orrit M. Third-harmonic generation from single gold nanoparticles. Nano Lett 2005;5:799–802. PubMedCrossrefGoogle Scholar

[47]

Kauranen M, Zayats AV. Nonlinear plasmonics. Nat Photon 2012;6:737–48. CrossrefGoogle Scholar

[48]

Bache M, Lavrinenko AV. Ultrafast nonlinear dynamics of thin gold films due to an intrinsic delayed nonlinearity. J Opt 2017;19:94004. CrossrefGoogle Scholar

[49]

Klimov V. Nanoplasmonics. Singapore, Pan Stanford, 2014. Google Scholar

[50]

Ferrera M, Razzari L, Duchesne D, et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photon 2008;2:737–40. CrossrefGoogle Scholar

[51]

Alam MZ, De Leon I, Boyd RW. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 2016;352:795–7. PubMedCrossrefGoogle Scholar

[52]

Kippenberg TJ, Spillane SM, Vahala KJ. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys Rev Lett 2004;93:083904. CrossrefGoogle Scholar

[53]

Agha IH, Okawachi Y, Gaeta AL. Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. Opt Express 2009;17:16209–15. CrossrefPubMedGoogle Scholar

[54]

Liang W, Savchenkov AA, Matsko AB, Ilchenko VS, Seidel D, Maleki L. Generation of near-infrared frequency combs from a MgF_{2} whispering gallery mode resonator. Opt Lett 2011;36:2290–2. CrossrefGoogle Scholar

[55]

Herr T, Hartinger K, Riemensberger J, et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat Photon 2012;6:480–7. CrossrefGoogle Scholar

[56]

Papp SB, Diddams SA. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Phys Rev A 2011;84:053833. CrossrefGoogle Scholar

[57]

Li J, Lee H, Chen T, Vahala KJ. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys Rev Lett 2012;109:233901. PubMedCrossrefGoogle Scholar

[58]

Razzari L, Duchesne D, Ferrera M, et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat Photon 2010;4:41–5. CrossrefGoogle Scholar

[59]

Hausmann BJM, Bulu I, Venkataraman V, Deotare P, Lončar M. Diamond nonlinear photonics. Nat Photon 2014;8:369–74. CrossrefGoogle Scholar

[60]

Jung H, Xiong C, Fong KY, Zhang X, Tang HX. Optical frequency comb generation from aluminum nitride microring resonator. Opt Lett 2013;38:2810–3. PubMedCrossrefGoogle Scholar

[61]

Levy JS, Gondarenko A, Foster MA, Turner-Foster AC, Gaeta AL, Lipson M. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat Photon 2010;4:37–40. CrossrefGoogle Scholar

[62]

Miller SA, Okawachi Y, Ramelow S, et al. Tunable frequency combs based on dual microring resonators. Opt Express 2015;23:21527–40. PubMedCrossrefGoogle Scholar

[63]

Ferdous F, Miao H, Leaird DE, et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat Photon 2011;5:770–6. CrossrefGoogle Scholar

[64]

Liu Y, Xuan Y, Xue X, et al. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica 2014;1:137–44. CrossrefGoogle Scholar

[65]

Xue X, Xuan Y, Liu Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat Photon 2015;9: 594–600. CrossrefGoogle Scholar

[66]

Griffith AG, Lau RKW, Cardenas J, et al. Silicon-chip mid-infrared frequency comb generation. Nat Commun 2015;6:6299. CrossrefPubMedGoogle Scholar

[67]

Del’Haye P, Coillet A, Loh W, Beha K, Papp SB, Diddams SA. Phase steps and resonator detuning measurements in microresonator frequency combs. Nat Commun 2015;6:5668. CrossrefPubMedGoogle Scholar

[68]

Almeida VR, Xu Q, Barrios CA, Lipson M. Guiding and confining Light in void nanostructure. Opt Lett 2004;29:1209–11. PubMedCrossrefGoogle Scholar

[69]

Baehr-Jones T, Penkov B, Huang J, et al. Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V. Appl Phys Lett 2008;92:163303. CrossrefGoogle Scholar

[70]

Merklein M, Kabakova IV, Büttner TFS, et al. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits. Nat Commun 2015;6:6396. PubMedCrossrefGoogle Scholar

[71]

Van Laer R, Kuyken B, Van Thourhout D, Baets R. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nat Photon 2015;9:199–203. CrossrefGoogle Scholar

[72]

Danckwerts M, Novotny L. Optical frequency mixing at coupled gold nanoparticles. Phys Rev Lett 2007;98:026104. PubMedCrossrefGoogle Scholar

[73]

Palomba S, Novotny L. Nonlinear excitation of surface plasmon polaritons by four-wave mixing. Phys Rev Lett 2008;101:056802. CrossrefPubMedGoogle Scholar

[74]

Grady NK, Knight MW, Bardhan R, Halas NJ. Optically-driven collapse of a plasmonic nanogap self-monitored by optical frequency mixing. Nano Lett 2010;10:1522–8. PubMedCrossrefGoogle Scholar

[75]

Ko KD, Kumar A, Fung KH, et al. Nonlinear optical response from arrays of Au bowtie nanoantennas. Nano Lett 2011;11:61–85. PubMedCrossrefGoogle Scholar

[76]

Schumacher T, Kratzer K, Molnar D, Hentschel M, Giessen H, Lippitz M. Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle. Nat Commun 2011;2:333. CrossrefGoogle Scholar

[77]

Harutyunyan H, Volpe G, Quidant R, Novotny L. Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. Phys Rev Lett 2012;108:217403. PubMedCrossrefGoogle Scholar

[78]

Slablab A, Xuan LL, Zielinski M, et al. Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres. Opt Express 2012;20:220–7. CrossrefGoogle Scholar

[79]

Abb M, Wang Y, Albella P, de Groot CH, Aizpurua J, Muskens OL. Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas. ACS Nano 2012;6:6462–70. PubMedCrossrefGoogle Scholar

[80]

Navarro-Cia M, Maier SA. Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation. ACS Nano 2012;6:3537–44. CrossrefPubMedGoogle Scholar

[81]

Hentschel M, Utikal T, Giessen H, Lippitz M. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas. Nano Lett 2012;12:3778–82. PubMedCrossrefGoogle Scholar

[82]

Krasnok AE, Maksymov IS, Denisyuk AI, et al. Optical nanoantennas. Phys-Usp 2013;56:539–64. CrossrefGoogle Scholar

[83]

Maksymov IS, Miroshnichenko AE, Kivshar YS. Cascaded four-wave mixing in tapered plasmonic nanoantenna. Opt Lett 2013;38:79–81. PubMedCrossrefGoogle Scholar

[84]

Drachev VP, Kildishev AV, Borneman JD, et al. Engineered nonlinear materials using gold nanoantenna array. Sci Rep 2018;8:780. PubMedCrossrefGoogle Scholar

[85]

Chen P-Y, Argyropoulos C, D’Aguanno G, Alú A. Enhanced second-harmonic generation by metasurface nanomixerand nanocavity. ACS Photon 2015;2:1000–6. CrossrefGoogle Scholar

[86]

Smirnova D, Kivshar YS. Multipolar nonlinear nanophotonics. Optica 2016;11:1241–55. Google Scholar

[87]

Wang C, Li Z, Kim M-H, et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat Commun 2017;8:2098. CrossrefPubMedGoogle Scholar

[88]

Chen S, Rahman M, Fai K, et al. Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces. ACS Photon 2018;5:1671–5. CrossrefGoogle Scholar

[89]

Lau RKW, Lamont MRE, Okawachi Y, Gaeta AL. Effects of multiphoton absorption on parametric comb generation in silicon microresonators. Opt Lett 2015;40:2778–81. CrossrefPubMedGoogle Scholar

[90]

Liu M, Wang L, Sun Q, et al. Influences of multiphoton absorption and free-carrier effects on frequency-comb generation in normal dispersion silicon microresonators. Photon Res 2018;6:238–43. CrossrefGoogle Scholar

[91]

Stern B, Ji X, Okawachi Y, Gaeta AL, Lipson M. Battery-operated integrated frequency comb generator. Nature 2018;562:401–5. PubMedCrossrefGoogle Scholar

[92]

Rogov AS, Narimanov EE. Nonlinear optics at low powers: alternative mechanism of on-chip optical frequency comb generation. Phys Rev A 2016;94:063832. CrossrefGoogle Scholar

[93]

Li J, Shen S, Qu Y, Zhang D, Wu Y. Generating orthogonally polarized dual frequency combs with slow megahertz repetition rates by a low-nanowatt-level pump. Phys Rev A 2018;98:023848. CrossrefGoogle Scholar

[94]

De Santis L, Antón C, Reznychenko B, et al. A solid-state single-photon filter. Nat Nanotechnol 2017;12:663–7. CrossrefPubMedGoogle Scholar

[95]

Kuznetsov VP. Equations of nonlinear acoustics. Akusticheskij Zhurnal 1970;16:548–53. Google Scholar

[96]

Maksymov IS, Greentree AD. Plasmonic nanoantenna hydrophones. Sci Rep 2016;6:32892. CrossrefPubMedGoogle Scholar

[97]

Hedberg CM, Rudenko OV. Pulse response of a nonlinear layer. J Acoust Soc Am 2001;110:2340–50. PubMedCrossrefGoogle Scholar

[98]

Perrin B. Some aspects of the comparison between optics and nonlinear acoustics (Quelques aspects de la comparison entre optique et acoustique non lineaires). J Phys Colloques 1979;11:C8–216. Google Scholar

[99]

de Gennes PG, Brochard-Wyart F, Quéré D. Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Berlin, Germany, Springer, 2004. Google Scholar

[100]

van Capel PJS, Péronne E, Dijkhuis JI. Nonlinear ultrafast acoustics at the nano scale. Ultrasonics 2015;56:36–51. PubMedCrossrefGoogle Scholar

[101]

Fabelinskii IL. Molecular scattering of light. Berlin, Germany, Springer, 1968. Google Scholar

[102]

Störkel U, Vodopyanov KL, Grill W. GHz ultrasound wave packets in water generated by an Er laser. J Phys D: Appl Phys 1998;31:2258–63. CrossrefGoogle Scholar

[103]

Rossignol C, Chigarev N, Ducousso M, et al. In vitro picosecond ultrasonics in a single cell. Appl Phys Lett 2008;93:123901. CrossrefGoogle Scholar

[104]

Wright OB, Perrin B, Matsuda O, Gusev VE. Optical excitation and detection of picosecond acoustic pulses in liquid mercury. Phys Rev B 2008;78:024303. CrossrefGoogle Scholar

[105]

Zijlstra A, Fernandez-Rivas D, Han Gardeniers JGE, Versluis M, Lohse D. Enhancing acoustic cavitation using artificial crevice bubbles. Ultrasonics 2015;56:512–23. PubMedCrossrefGoogle Scholar

[106]

Bahl G, Tomes M, Marquardt F, Carmon T. Observation of spontaneous Brillouin cooling. Nat Phys 2012;8:203–7. CrossrefGoogle Scholar

[107]

Rakich PT, Reinke C, Camacho R, Davids P, Wang Z. Giant enhancement of stimulated Brillouin scattering in the subwavelength limit. Phys Rev X 2012;2:011008. Google Scholar

[108]

Beugnot J-C, Laude V. Electrostriction and guidance of acoustic phonons in optical fibers. Phys Rev B 2012; 86:224304. CrossrefGoogle Scholar

[109]

Baker C, Hease W, Nguyen D-T, et al. Photoelastic coupling in gallium arsenide optomechanical disk resonators. Opt Express 2014;22:14072–86. PubMedCrossrefGoogle Scholar

[110]

Babchin AJ, Gur Y, Lin IJ. Repulsive interface forces in overlapping electric double layers in electrolyte solutions. Adv Colloid Interface Sci 1978;9:105–41. CrossrefGoogle Scholar

[111]

Gojani AB, Bejtullahu R, Obayashi S. On two optomechanical effects of laser-induced electrostriction in dielectric liquids. Jpn J Appl Phys 2014;53:092703. CrossrefGoogle Scholar

[112]

Guan B-O, Jin L, Cheng L, Liang Y. Acoustic and ultrasonic detection with radio-frequency encoded fiber laser sensors. IEEE J Sel Top Quantum Electron 2017;23:5601712. Google Scholar

[113]

Wilkens V. Characterization of an optical multilayer hydrophone with constant frequency response in the range from 1 to 75 MHz. J Acoust Soc Am 2003;113:1431–8. CrossrefPubMedGoogle Scholar

[114]

Li G, Guo Z, Chen S-L. Miniature all-optical probe for large synthetic aperture photoacoustic-ultrasound imaging. Opt Express 2017;25:25023–35. PubMedCrossrefGoogle Scholar

[115]

Xia W, West SJ, Finlay MC, et al. Three-dimensional ultrasonic needle tip tracking with a fiber-optic ultrasound receiver. J Vis Exp 2018;138:e57207. Google Scholar

[116]

Kessler BV. Method and apparatus for optically detecting acoustic disturbances. US Patent 3,474,253. 1969.

[117]

Tietjen BW. The optical grating hydrophone. J Acoust Soc Am 1981;69:993–7. CrossrefGoogle Scholar

[118]

Morris P, Hurrell A, Shaw A, Zhang E, Beard P. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure. J Acoust Soc Am 2009;125:3611–22. PubMedCrossrefGoogle Scholar

[119]

Chao C-Y, Ashkenazi S, Huang S-W, O’Donnell M, Jay Guo L. High-frequency ultrasound sensors using polymer microring resonators. IEEE Trans Ultrason Ferroelectr Freq Control 2007;54:957–65. PubMedCrossrefGoogle Scholar

[120]

Li H, Dong B, Zhang Z, Zhang HF, Sun C. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci Rep 2014;4:4496. PubMedGoogle Scholar

[121]

Yakovlev VV, Dickson W, Murphy A, et al. Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials. Adv Mater 2013;25:2351–6. CrossrefPubMedGoogle Scholar

[122]

Maksymov IS, Greentree AD. Synthesis of discrete phase-coherent optical spectra from nonlinear ultrasound. Opt Express 2017;25:7496–506. CrossrefPubMedGoogle Scholar

[123]

Novotny L, van Hulst N. Antennas for light. Nat Photon 2011;5:83–90. CrossrefGoogle Scholar

[124]

Agio M, Alù A. Optical antennas. Cambridge, England, Cambridge University Press, 2013. Google Scholar

[125]

Ruijgrok PV, Zijlstra P, Tchebotareva AL, Orrit M. Damping of acoustic vibrations of single gold nanoparticles optically trapped in water. Nano Lett 2012;12:1063–9. CrossrefPubMedGoogle Scholar

[126]

O’Brien K, Lanzillotti-Kimura ND, Rho J, Suchowski H, Yin X, Zhang X. Ultrafast acousto-plasmonic control and sensing in complex nanostructures. Nat Commun 2014;5:4042. PubMedCrossrefGoogle Scholar

[127]

Chang WS, Wen F, Chakraborty D, et al. Tuning the acoustic frequency of a gold nanodisk through its adhesion layer. Nat Commun 2015;6:7022. CrossrefPubMedGoogle Scholar

[128]

Wu J, Xiang D, Gordon R. Characterizing gold nanorods in aqueous solution by acoustic vibrations probed with four-wave mixing. Opt Express 2016;24:12458–65. PubMedCrossrefGoogle Scholar

[129]

Loh W, Yegnanarayanan S, Ram RJ, Juodawlkis PW. A nonlinear optoelectronic filter for electronic signal processing. Sci Rep 2014;4:3613. PubMedGoogle Scholar

[130]

de Chatellus HG, Cortés LR, Azaña J. Optical real-time Fourier transformation with kilohertz resolutions. Optica 2016;3:1–8. CrossrefGoogle Scholar

[131]

Anand S, Eryürek M, Karadag Y, et al. Observation of whispering gallery modes in elastic light scattering from microdroplets optically trapped in a microfluidic channel. J Opt Soc Am B 2016;33:1349–54. CrossrefGoogle Scholar

[132]

Giorgini A, Avino S, Malara P, De Natale P, Gagliardi G. Opto-mechanical oscillator in a nanoliter droplet. Opt Lett 2018;43:3473–6. CrossrefGoogle Scholar

[133]

Bar-David D, Maayani S, Martin LL, Carmon T. Cavity optofluidics: a μdroplet’s whispering-gallery mode makes a μvortex. Opt Express 2018;26:19115–22. PubMedCrossrefGoogle Scholar

[134]

Ma Y, Huang Q, Li T, et al. A local nanofiber-optic ear. ACS Photonics 2016;3:1762–7. CrossrefGoogle Scholar

[135]

Lauterborn W, Kurz T. Physics of bubble oscillations. Rep Prog Phys 2010;73:106501. CrossrefGoogle Scholar

[136]

Maksymov IS, Greentree AD. Acoustically tunable optical transmission through a subwavelength hole with a bubble. Phys Rev A 2017;95:033811. CrossrefGoogle Scholar

[137]

Tsamopoulos JA, Brown RA. Nonlinear oscillations of inviscid drops and bubbles. J Fluid Mech 1983;127:519–37. CrossrefGoogle Scholar

[138]

Rayleigh L. On the capillary phenomena of jets. Proc R Soc Lond 1879;29:71–97. CrossrefGoogle Scholar

[139]

Oh JM, Ko SH, Kang KH. Shape oscillation of a drop in AC electrowetting. Langmuir 2008;24:8379–86. CrossrefPubMedGoogle Scholar

[140]

Maksymov IS, Greentree AD. Dynamically reconfigurable plasmon resonances enabled by capillary oscillations of liquid-metal nanodroplets. Phys Rev A 2017;96:043829. CrossrefGoogle Scholar

[141]

Dahan R, Martin LL, Carmon T. Droplet optomechanics. Optica 2016;3:175–8. CrossrefGoogle Scholar

[142]

Schulman RD, Dalnoki-Veress K. Droplets capped with an elastic film can be round, elliptical, or nearly square. Phys Rev Lett 2018;121:248004. CrossrefPubMedGoogle Scholar

[143]

Maayani S, Martin LL, Kaminski S, Carmon T. Cavity optocapillaries. Optica 2016;3:552–5. CrossrefGoogle Scholar

[144]

Mitsui T. Photoacoustic excitation of ripplon on liquid droplet adhered to tip of optical fiber. Jpn J Appl Phys 2004; 43:8345–6. CrossrefGoogle Scholar

[145]

Kaminski S, Martin LL, Maayani S, Carmon T. Ripplon laser through stimulated emission mediated by water waves. Nat Photon 2016;10:758–61. CrossrefGoogle Scholar

[146]

Laude V, Belkhir A, Alabaid AF, et al. Extraordinary nonlinear transmission modulation in a doubly resonant acousto-optical structure. Optica 2017;4:1245–50. CrossrefGoogle Scholar

[147]

Carmon T, Vahala KJ. Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency. Phys Rev Lett 2007;98:123901. PubMedCrossrefGoogle Scholar

[148]

Zhang X, Zou C-L, Jiang L, Tang HX. Cavity magnetomechanics. Sci Adv 2016;2:e1501286. CrossrefGoogle Scholar

[149]

Li J, Zhu S-Y, Agarwal GS. Magnon-photon-phonon entanglement in cavity magnomechanics. arXiv: 1807.07158v3. Google Scholar

[150]

Maksymov IS. Perspective: strong microwave photon-magnon coupling in multiresonant dielectric antennas. J Appl Phys 2018;124:150901. CrossrefGoogle Scholar

[151]

Friend J, Yeo L. Using laser Doppler vibrometry to measure capillary surface waves on fluid-fluid interfaces. Biomicrofluidics 2010;4:026501. PubMedCrossrefGoogle Scholar

[152]

Blamey J, Yeo LY, Friend JR. Microscale capillary wave turbulence excited by high frequency vibration. Langmuir 2013;29:3835–45. PubMedCrossrefGoogle Scholar

[153]

Argo IV TF, Wilson PS, Palan V. Measurement of the resonance frequency of single bubbles using a laser Doppler vibrometer. J Acoust Soc Am 2006;123:EL121–5. Google Scholar

[154]

Yoshida K, Yoshikawa T, Koyma D, Nakamura K, Watanabe Y. Experimental measurement of microbubble oscillation by using laser Doppler vibrometer. AIP Conf Proc 2012;1433:304. Google Scholar

[155]

Kuo KA, Hunt HEM. Vibrations of bubbles and balloons. Acoust Australia 2012;40:183–7. Google Scholar

[156]

Xu L, Rahmani M, Smirnova D, et al. Highly-efficient longitudinal second-harmonic generation from doubly-resonant AlGaAs nanoantennas. Photonics 2018;5:29. CrossrefGoogle Scholar

[157]

Cavalieri F, Micheli L, Kaliappan S, et al. Antimicrobial and biosensing ultrasound-responsive lysozyme-shelled microbubbles. ACS Appl Mater Interfaces 2013;5:464–71. CrossrefPubMedGoogle Scholar

[158]

Lin CA, Chuang WK, Huang ZY, et al. Rapid transformation of protein-caged nanomaterials into microbubbles as bimodal imaging agents. ACS Nano 2012;6:5111–21. CrossrefPubMedGoogle Scholar

[159]

Dickey MD. Stretchable and soft electronics using liquid metals. Adv Mater 2017;29:1606425. CrossrefGoogle Scholar

[160]

Lin Y, Liu Y, Genzer J, Dickey MD. Shape-transformable liquid metal nanoparticles in aqueous solution. Chem Sci 2017;8:3832–7. CrossrefPubMedGoogle Scholar

[161]

Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev 2018;47:4073–111. PubMedCrossrefGoogle Scholar

[162]

Wu PC, Kim TH, Brown AS, Losurdo M, Bruno G, Everitt HO. Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry. Appl Phys Lett 2007;90:103119. CrossrefGoogle Scholar

[163]

Sanz JM, Ortiz D, Alcaraz de la Osa R, et al. UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects. J Phys Chem C 2013;117:19606–15. CrossrefGoogle Scholar

[164]

McMahon JM, Schatz GC, Gray SK. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Ti, Pb, and Bi. Phys Chem Chem Phys 2013;15:5415–23. CrossrefGoogle Scholar

[165]

Naik GV, Shalaev VM, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Adv Mater 2013;25: 3264–94. PubMedCrossrefGoogle Scholar

[166]

Yang Y, Akozbek N, Kim T-H, et al. Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry. ACS Photon 2014;1:582–9. CrossrefGoogle Scholar

[167]

Knight MW, Coenen T, Yang Y, et al. Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles. ACS Nano 2015;9:2049–60. CrossrefPubMedGoogle Scholar

[168]

Toudert J, Serna R. Ultraviolet-visible interband plasmonics with p-block elements. Opt Mater Express 2016;6:2434–47. CrossrefGoogle Scholar

[169]

Zhang T, Wang Y, Appusamy K, et al. Gallium platinum alloys – a new material system for UV plasmonics. Opt Mater Express 2017;7:2880–7. CrossrefGoogle Scholar

[170]

Catalán-Gómez S, Redondo-Cubero A, Palomares FJ, Nucciarelli F, Pau JL. Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperatures. Nanotechnology 2017;28:405705. CrossrefPubMedGoogle Scholar

[171]

Nucciarelli F, Bravo I, Catalan-Gomez S, Vázquez L, Lorenzo E, Pau JL. High ultraviolet absorption in colloidal gallium nanoparticles prepared from thermal evaporation. Nanomaterials 2017;7:172. CrossrefGoogle Scholar

[172]

Gutiérrez Y, Alcaraz de la Osa R, Ortiz D, Saiz JM, González F, Moreno F. Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium. Appl Sci 2018;8:64. CrossrefGoogle Scholar

[173]

Morales D, Stoute NA, Yu Z, Aspnes DE, Dickey MD. Liquid gallium and the eutectic gallium indium (EGaIn) alloy: dielectric functions from 1.24 to 3.1 eV by electrochemical reduction of surface oxides. Appl Phys Lett 2016;109:091905. CrossrefGoogle Scholar

[174]

Morley NB, Burris J, Cadwallader LC, Nornberg MD. GaInSn usage in the research laboratory. Rev Sci Instrum 2008;79:056107. CrossrefPubMedGoogle Scholar

[175]

Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM. Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Funct Mater 2008;18:1097–104. CrossrefGoogle Scholar

[176]

Lu Y, Hu Q, Lin Y, et al. Transformable liquid-metal nanomedicine. Nat Commun 2015;6:10066. PubMedCrossrefGoogle Scholar

[177]

Reineck P, Lin Y, Gibson BC, Dickey MD, Greentree AD, Maksymov IS. UV plasmonic properties of colloidal liquid-metal eutectic gallium-indium alloy nanoparticles. arXiv:1810.06163. Google Scholar

[178]

Gibbs HM. Optical bistability: controlling light with light. Cambridge, MA, USA, Academic Press, 1985. Google Scholar

[179]

Ikeda K, Akimoto O. Instability leading to periodic and chaotic self-pulsations in a bistable optical cavity. Phys Rev Lett 1982;48:617–20. CrossrefGoogle Scholar

[180]

Flint EB, Suslick KS. The temperature of cavitation. Science 1991;253:1397–9. CrossrefPubMedGoogle Scholar

[181]

Cui P, Zhang AM, Wang S, Khoo BC. Ice breaking by a collapsing bubble. J Fluid Mech 2018;841:287–309. CrossrefGoogle Scholar

[182]

Wang QX, Blake JR. Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J Fluid Mech 2010;659:191–224. CrossrefGoogle Scholar

[183]

Wang QX, Blake JR. Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave. J Fluid Mech 2011;679:559–81. CrossrefGoogle Scholar

[184]

Fong SW, Klaseboer E, Turangan CK, Khoo BC, Hung KC. Numerical analysis of a gas bubble near bio-materials in an ultrasound field. Ultrasound Med Biol 2006;32: 925–42. CrossrefGoogle Scholar

[185]

Curtiss GA, Leppinen DM, Wang QX, Blake JR. Ultrasonic cavitation near a tissue layer. J Fluid Mech 2013;730:245–72. CrossrefGoogle Scholar

[186]

Boyd B, Becker S. Numerical modelling of an acoustically-driven bubble collapse near a solid boundary. Fluid Dyn Res 2018;50:065506. CrossrefGoogle Scholar

[187]

Supponen O, Obreschkow D, Tinguely M, Kobel P. Scaling laws for jets of single cavitation bubbles. J Fluid Mech 2016;802:263–93. CrossrefGoogle Scholar

[188]

Blake JR, Leppinen DM, Wang Q. Cavitation and bubble dynamics: the Kelvin impulse and its applications. Interface Focus 2015;5:20150017. PubMedCrossrefGoogle Scholar

[189]

Wang QX, Yeo KS, Khoo BC, Lam KY. Nonlinear interaction between gas bubble and free surface. Comput Fluids 1996;25:607–28. CrossrefGoogle Scholar

[190]

Feng ZC, Leal LG. Nonlinear bubble dynamics. Annu Rev Fluid Mech 1997;29:201–43. CrossrefGoogle Scholar

[191]

Joannopoulos JD, Johnson SG, Winn JN, Meade RD. Photonic crystals: molding the flow of light. Princeton, NJ, USA, Princeton University Press, 2008. Google Scholar

[192]

Smith CLC, Bog U, Tomljenovic-Hanic S, et al. Reconfigurable microfluidic photonic crystal slab cavities. Opt Express 2008;16:15887–96. CrossrefPubMedGoogle Scholar

[193]

Khelif A, Adibi A. Phononic crystals: fundamentals and applications. New York, USA, Springer, 2016. Google Scholar

[194]

Webb CE, Jones JDC. Handbook of laser technology and applications. Volume III: applications. Bristol, UK, Institute of Physics Publishing, 2004. Google Scholar

[195]

Masters BR, So PTC. Handbook of biomedical nonlinear optical microscopy. Oxford, UK, Oxford University Press, 2008. Google Scholar

[196]

Blomley MJK, Cooke JC, Unger EC, Monaghan MJ, Cosgrove DO. Microbubble contrast agents: a new era in ultrasound. Br Med J 2001;322:1222–5. CrossrefGoogle Scholar

[197]

Qin S, Caskey CF, Ferrara KW. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys Med Biol 2009;54:R27–57. PubMedCrossrefGoogle Scholar

[198]

Jung EE, Erickson D. Continuous operation of a hybrid solid-liquid state reconfigurable photonic system without resupply of liquids. Lab Chip 2012;12:2575–9. CrossrefPubMedGoogle Scholar

[199]

Phillips CL, Jankowski E, Krishnatreya BJ, et al. Digital colloids: reconfigurable clusters as high information density elements. Soft Matter 2014;10:7468–79. PubMedCrossrefGoogle Scholar

[200]

Krupenkin T, Yang S, Mach P. Tunable liquid microlens. Appl Phys Lett 2003;82:316–8. CrossrefGoogle Scholar

[201]

Altkorn R, Koev I, Van Duyne RP, Litorja M. Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy. Appl Opt 1997;36:8992–8. CrossrefPubMedGoogle Scholar

[202]

Couny F, Benabid F, Roberts PJ, Light PS, Raymer MG. Generation and photonic guidance of multi-octave optical-frequency combs. Science 2007;318:1118–21. CrossrefPubMedGoogle Scholar

[203]

Benoît A, Beaudou B, Alharbi M, et al. Over-five octaves wide Raman combs in high-power picosecond-laser pumped H_{2}-filled inhibited coupling Kagome fiber. Opt Express 2015;23:14002–9. CrossrefGoogle Scholar

[204]

Scholten PC. The origin of magnetic birefringence and dichroism in magnetic fluids. IEEE Trans Magnet 1980;16:221–5. CrossrefGoogle Scholar

[205]

Stepanov VI, Raikher YL. Dynamic birefringence in magnetic fluids with allowance for mechanical and magnetic degrees of freedom of the particles. J Magn Magn Mater 2002;252:180–2. CrossrefGoogle Scholar

[206]

Maksymov IS. Magneto-plasmonic nanoantennas: basics and applications. Rev Phys 2016;1:36–51. CrossrefGoogle Scholar

[207]

Shulyma SI, Tanygin BM, Kovalenko VF, Petrychuk MV. Magneto-optical extinction trend inversion in ferrofluids. J Magn Magn Mater 2016;416:141–9. CrossrefGoogle Scholar

[208]

Morse PM, Uno Ingard K. Theoretical acoustics. New York, USA, McGraw-Hill, 1968. Google Scholar

[209]

Ward GP, Lovelock RK, Murray ARJ, Hibbins AP, Sambles JR, Smith JD. Boundary-layer effects on acoustic transmission through narrow slit cavities. Phys Rev Lett 2015;115: 044302. CrossrefPubMedGoogle Scholar

[210]

Homentcovschi D, Miles RN, Tan L. Influence of viscosity on the diffraction of sound by a periodic array of screens. J Acoust Soc Am 2005;117:2761–71. CrossrefPubMedGoogle Scholar

[211]

Baudoin M, Thomas J-L, Coulouvrat F, Chaneac C. Scattering of ultrasonic shock waves in suspensions of silica nanoparticles. J Acoust Soc Am 2011;129:1209–20. CrossrefPubMedGoogle Scholar

[212]

Xiong H, Si L-G, Zheng A-S, Yang X, Wu Y. Higher-order sidebands in optomechanically induced transparency. Phys Rev A 2012;86:013815. CrossrefGoogle Scholar

[213]

Cao C, Mi S-C, Wang T-J, Zhang R, Wang C. Optical high-order sideband comb generation in a photonic molecule optomechanical system. IEEE J Quantum Electron 2016;52:7000205. Google Scholar

[214]

Vitko VV, Nikitin AA, Ustinov AB, Kalinikos BA. Microwave bistability in active ring resonators with dual spin-wave and optical nonlinearities. IEEE Magn Lett 2018;9:3506304. Google Scholar

[215]

Sun Y, Sukhorukov AA. Chaotic oscillations of coupled nanobeam cavities with tailored optomechanical potentials. Opt Lett 2014;39:3543–6. PubMedCrossrefGoogle Scholar

[216]

Childress L, Schmidt MP, Kashkanova AD, et al. Cavity optomechanics in a levitated helium drop. Phys Rev A 2017;98:063842. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.