Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

See all formats and pricing
More options …
Volume 41, Issue 4


Simultaneous accumulation of anatoxin-a and microcystins in three fish species indigenous to lakes affected by cyanobacterial blooms

Barbara Pawlik-Skowrońska
  • Department of Hydrobiology, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-261, Lublin, Poland
  • Polish Academy of Sciences, Centre for Ecological Research in Dziekanów Leśny, Experimental Station, Niecała 18, 20-080, Lublin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Magdalena Toporowska / Jacek Rechulicz
Published Online: 2012-11-06 | DOI: https://doi.org/10.2478/s13545-012-0039-6


A four-year study carried out in a lake with perennial water blooms caused by toxigenic Planktothrix agardhii (Oscillatoriales) and Anabaena lemmermanii, Anabaena flos-aquae, Anabaena spp. and Aphanizomenon issatchenkoi (Nostocales) revealed that the lake-dwelling fish were threatened by simultaneous exposure to intracellular and extracellular microcystins (MCs) as well as anatoxin-a (ANTX). Higher contents of anatoxin-a and microcystins were found in livers than in fish muscles. This is the first report on ANTX accumulation in the common fish, indigenous to European freshwaters during perennial cyanobacterial blooms. Generally, the omnivorous roach (Rutilus rutilus) and Prussian carp (Carassius gibelio) accumulated higher amounts of MCs in their tissues compared to mostly predacious perch (Perca fluviatilis), and similar amounts of ANTX. The long-lasting presence of MCs exceeding the safe levels for consumption was found in fish muscles. ANTX accumulation in fish muscles (up to 30 ng g−1 FW) suggests the probability of its transfer in a food chain.

Keywords: anatoxin-a; cyanobacteria; fish; microcystins; risk assessment

  • [1] Adamovsky O., Kopp R., Hilscherova K., Babica P., Palikova M., Paskova V., Navratil S., Marsalek B., Blaha L., 2007, Microcystin kinetics ( bioaccumulation and elimination) and biochemical responses in common carp (Cyprinus carpio) and silver carp (Hypophthalmichthys molitrix) exposed to toxic cyanobacterial blooms. Environ. Toxicol. Chem. 26: 2687–2693. http://dx.doi.org/10.1897/07-213.1CrossrefGoogle Scholar

  • [2] Ballot A., Fastner J., Lantz M., Wiedner C., 2010, First report of anatoxin-a-producing cyanobacterium Aphanizomenon issatchenkoi in northeastern Germany. Toxicon, 56: 964–971 http://dx.doi.org/10.1016/j.toxicon.2010.06.021CrossrefGoogle Scholar

  • [3] Becker V., de Cardoso L., Motta Marques D., 2004, Development of Anabaena Bory ex Bornet & Flahault (Cyanobacteria) blooms in a shallow, subtropical lake in southern Brazil, Acta Limnol. Bras., 16: 306–317 Google Scholar

  • [4] Berry J.P., Gantar M., Gibbs P.D., Schmale M.C. 2007, The zebrafish (Danio rerio) embryo as a model system for identification and characterization of developmental toxins from marine and freshwater microalgae, Comp. Bioch. Physiol. Part C, 145: 61–72 Google Scholar

  • [5] Bogialli S., Bruno M., Curini R., Di Corcia A., Lagana A., 2006, Simple and rapid determination of anatoxin-a in Lake water and Fish muscle tissue by liquid chromatography-tandem mass spectrometry, J. Chromatogr.A., 1122:180–185 http://dx.doi.org/10.1016/j.chroma.2006.04.064CrossrefGoogle Scholar

  • [6] Bradburn M., Lewis Jr W.M., McCutchan Jr J.H., 2012, Comparative adaptations of Aphanizpmenon and Anabaena for nitrogen fixation under weak irradiance. Freshwat. Biol., 57: 1042–1049. http://dx.doi.org/10.1111/j.1365-2427.2012.02765.xCrossrefGoogle Scholar

  • [7] Briand J.F., Robillot C., Quiblier-Lloberas C., Bernard C., 2002, A perennial bloom of Planktothrix agardhii (Cyanobacteria) in a shallow eutrophic French lake: limnological and microcystin production studies Arch. Hydrobiol., 153: 605–622 Google Scholar

  • [8] Bumke-Vogt C., Mailahn W., Chorus I., 1999, Anatoxin-a and neurotoxic Cyanobacteria in German lakes and reservoirs., Environ. Toxicol., 14: 117–125 http://dx.doi.org/10.1002/(SICI)1522-7278(199902)14:1<117::AID-TOX15>3.0.CO;2-VCrossrefGoogle Scholar

  • [9] Carmichael W.W., 1992, Cyanobacteria secondary metabolites — the cyanotoxins. J. Appl. Bacteriol., 72: 445–459 http://dx.doi.org/10.1111/j.1365-2672.1992.tb01858.xCrossrefGoogle Scholar

  • [10] Carlson R.E., 1977, A trophic state index for lakes, Limnol. Oceanogr., 22: 361–369 http://dx.doi.org/10.4319/lo.1977.22.2.0361CrossrefGoogle Scholar

  • [11] Cazenave J., Bistoni M.A., Pesce S.F., Wunderlin D.A., 2006, Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR, Aquat. Toxicol., 76: 1–12 http://dx.doi.org/10.1016/j.aquatox.2005.08.011CrossrefGoogle Scholar

  • [12] Chen J., Xie P., Li L., Xu J., 2009, First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage, Toxicol. Sci., 108: 81–89 http://dx.doi.org/10.1093/toxsci/kfp009CrossrefGoogle Scholar

  • [13] Codd, G., 2000, Cyanobacterial toxins, the parception of water quality, and the prioritisation of eutrophication control, Ecol. Eng., 16: 51–60 http://dx.doi.org/10.1016/S0925-8574(00)00089-6CrossrefGoogle Scholar

  • [14] Dikkeboom R., Van der Knaap W.P.W., Meuleman E.A., Sminia T., 1985, A comparative study on the internal defence system of juvenile and adult Lymnaea stagnalis, Immunology, 55: 547–553 Google Scholar

  • [15] El Ghazali I., Saqrane S., Carvalho A.P., Ouahid Y., Del Campo F., Oudra B., Vasconcelos V., 2010, Effect of different microcystin profiles on toxin bioaccumulation in common carp (Cyprinus carpio) larvae via Artemia nauplii, Ecotox. Environ. Safety, 73: 762–770 http://dx.doi.org/10.1016/j.ecoenv.2009.12.015CrossrefGoogle Scholar

  • [16] Furey A., Crowley J., Hamilton B., Lehane M., James K.J., 2005, Strategies to avoid the mis-identification of anatoxin-a using mass spectrometry in the forensic investigation of acute neurotoxic poisoning, J. Chromat. A., 1082: 91–97 http://dx.doi.org/10.1016/j.chroma.2005.05.040CrossrefGoogle Scholar

  • [17] Golterman H.L., 1971, Methods for chemical analysis of fresh waters. Blackwell, IBP Handbook, Oxford, -, Edinburgh, pp. 166 Google Scholar

  • [18] Grabowska M., Mazur-Marzec H., 2010, The effect of cyanobacterial blooms in the Siemianówka dam reservoir on the phytoplankton structure in the Narew river, Hydrobiol. Oceanol. Stud., 40:19–26 http://dx.doi.org/10.2478/s13545-011-0003-xCrossrefGoogle Scholar

  • [19] Harada K.I., Tsuji K., Watanabe M.F., Kondo F., 1996, Stability of microcystins from cyanobacteria. III. Effect of pH and temperature, Phycologia, 35: 83–88 http://dx.doi.org/10.2216/i0031-8884-35-6S-83.1CrossrefGoogle Scholar

  • [20] Hardy J., 2008, Final Report. Washington State Recreational Guidance for Microcystins (Provisional) and Anatoxin-a (Interim/Provisional), Washington State Department of Health, Olympia, Washington, pp 19 Google Scholar

  • [21] Ibelings B.W., Bruning K., de Jonge J., Wolfstein K., Dionisio Pires L., Postma J., Burger T., 2005, Distribution of microcystins in a lake foodweb: no evidence for biomagnification, Microbial. Ecol., 49: 487–500 http://dx.doi.org/10.1007/s00248-004-0014-xCrossrefGoogle Scholar

  • [22] James K.J., Furey A., Sherlock I.R., Stack M.A., Twohing M., 1998, Sensitive determination of anatoxin-a, homoanatoxin-a and their degradation products by liquid chromatography with fluorometric detection, J. Chromatogr. A., 798: 147–157 http://dx.doi.org/10.1016/S0021-9673(97)01207-7CrossrefGoogle Scholar

  • [23] Kaya K., Sano T., 1999, Total microcystin determination using erythro-2-methyl-3-(methoxy-d3)-4-phenylbutyric acid (MMPB-d3) as the internal standard, Anal. Chim. Acta., 386: 107–112 http://dx.doi.org/10.1016/S0003-2670(99)00012-4CrossrefGoogle Scholar

  • [24] Kopp R., Mareš J., Palíková M., Navrátil S., Kubíček Z., Ziková A., Klávková J., Bláha L., 2009, Biochemical parameters of blood plasma and content of microcystins in tissues of common carp (Cyprinus carpio L.) from a hypertrophic pond with cyanobacterial water bloom, Aquacult. Res., 40: 1683–1693 http://dx.doi.org/10.1111/j.1365-2109.2009.02285.xCrossrefGoogle Scholar

  • [25] Kamjunke N., Schmidt K., Pfchlugmacher S., Mehner T., 2002, Consumption of cyanobacteria by roach (Rutilus rutilus): useful or harmful to the fish?, Freshwat. Biol., 47: 243–250 http://dx.doi.org/10.1046/j.1365-2427.2002.00800.xCrossrefGoogle Scholar

  • [26] Kolmakov V.I., Gladyshev M.I., 2003, Growth and potential photosynthesis of cyanobacteria are stimulated by viable gut passage in crucian carp, Aquat. Ecol., 37: 237–242 http://dx.doi.org/10.1023/A:1025801326088CrossrefGoogle Scholar

  • [27] Kotak B.G., Zurawell R.W., Prepas E.E., Holmes C.F.B., 1996, Microcystin-LR concentration in aquatic food web compartments from lakes of varying trophic status, Can. J. Fish. Aquat. Sci., 53: 1974–1985 http://dx.doi.org/10.1139/cjfas-53-9-1974CrossrefGoogle Scholar

  • [28] Kurmayer R., Christiansen G., Fastner.J, Borner T., 2004, Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp, Environ. Microbiol., 6: 831–841 http://dx.doi.org/10.1111/j.1462-2920.2004.00626.xCrossrefGoogle Scholar

  • [29] Lance E., Brient L., Bormans M., Gérard C., 2006, Interactions between cyanobacteria and Gastropods I. Ingestion of toxic Planktothrix agardhii by Lymnaea stagnalis and the kinetics of microcystin bioaccumulation and detoxification, Aquat. Toxicol., 79: 140–148 http://dx.doi.org/10.1016/j.aquatox.2006.06.004CrossrefGoogle Scholar

  • [30] Lawton L.A., Edwards C., Codd G.A., 1994, Extraction and high performance liquid chromatographic method for the determination of microcystins in raw and treated waters, Analyst, 119: 1525–1530 http://dx.doi.org/10.1039/an9941901525CrossrefGoogle Scholar

  • [31] Li X.Y., Chung I.K., Kim J.I., Lee J.A., 2004, Subchronic oral toxicity of microcystin in common carp (Cyprinus carpio L.) exposed to Microcystis under laboratory conditions, Toxicon 44: 821–827 http://dx.doi.org/10.1016/j.toxicon.2004.06.010CrossrefGoogle Scholar

  • [32] Malbrouck C., Kestemont P., 2006, Effects of microcystins on fish, Environ. Toxicol. Chem., 25: 72–86 http://dx.doi.org/10.1897/05-029R.1CrossrefGoogle Scholar

  • [33] Mazur-Marzec H., 2006, Characterization of phycotoxins produced by Cyanobacteria, Oceanol. Hydrobiol. Stud., 35: 85–109 Google Scholar

  • [34] Oberemm A., Fastner J., Steinberg C.E.W., 1997. Effects of microcystin-LR and cyanobacterial crude extracts on embryo-larval development of zebrafish (Danio rerio), Wat. Res., 11: 2918–2921 http://dx.doi.org/10.1016/S0043-1354(97)00120-6CrossrefGoogle Scholar

  • [35] Osswald J., Azevedo J., Vasconcelos V., Guilhermino L., 2011, Experimental determination of the bioconcentration factors for anatoxin-a in juvenile rainbow trout (Oncorhynchus mykiss). Proc. Intern.Ac. Ecol. Environ. Sci., 1(2): 77–86 Google Scholar

  • [36] Osswald J, Carvalho A, Claro J., Vasconcelos V., 2009a, Effects of cyanobacterial extracts containing anatoxin-a and of pure anatoxin-a on early developmental stages of carp. Ecotoxicology and Environmental Safety, 72: 473–478 http://dx.doi.org/10.1016/j.ecoenv.2008.05.011CrossrefGoogle Scholar

  • [37] Osswald J., Rellan S., Gago-Martinez A., Vasconcelos V., 2009b, Production of anatoxin-a by cyanobacterial strains isolated from Portugese fresh water systems, Ecotoxicology, 18: 1100–1115 http://dx.doi.org/10.1007/s10646-009-0375-5CrossrefGoogle Scholar

  • [38] Osswald J., Rellán S., Carvalho A.P., Gago A., Vasconcelos V., 2007, Acute effects of an anatoxin-a producing cyanobacterium on juvenile fish — Cyprinus carpio L, Toxicon, 49: 693–698 http://dx.doi.org/10.1016/j.toxicon.2006.11.010CrossrefGoogle Scholar

  • [39] Ozawa K., Yokoyama A., Ishikawa K., Kumagai M., Watanabe M.F., Park H.D., 2003, Accumulation and depuration of microcystin produced by the cyanobacterium Microcystis in a freshwater snail, Limnology, 4: 131–138 http://dx.doi.org/10.1007/s10201-003-0106-1CrossrefGoogle Scholar

  • [40] Papadimitriou O., Kagalou I., Bacopoulos V., Leonardos I., 2010, Accumulation of microcystins in water and fish tissues: an estimation of risks associated with microcystins in most of the Greek lakes, Environ. Toxicol., 25: 418–427 http://dx.doi.org/10.1002/tox.20513CrossrefGoogle Scholar

  • [41] Pawlik-Skowrońska B., Pirszel J., Kornijów R., 2008, Spatial and temporal variation in microcystin concentrations during perennial bloom of Planktothrix agardhiii in a hypertrophic lake, Ann. Limnol. — Int. J. Lim., 44: 63–68 http://dx.doi.org/10.1051/limn:2008023CrossrefGoogle Scholar

  • [42] Pawlik-Skowrońska B., Skowroński T., Pirszel J., Adamczyk A., 2004, Relationship between cyanobacterial bloom and anatoxin-a and microcystin occurrence in the eutrophic dam reservoir (SE Poland), Pol. J. Ecol., 52: 479–490 Google Scholar

  • [43] Pawlik-Skowrońska B., Toporowska M., 2011, Blooms of toxin-producing Cyanobacteria — a real threat in small dam reservoirs at the beginning of their operation, Hydrobiol. Oceanol. Stud., 40(4): 30–37 http://dx.doi.org/10.2478/s13545-011-0038-zCrossrefGoogle Scholar

  • [44] Pflugmacher S., Wiegand C., Oberemm A., Beattie K.A., Krause E., Codd G.A., 1998, Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxification, Biochim. Biophys. Acta., 142: 527–533 http://dx.doi.org/10.1016/S0304-4165(98)00107-XCrossrefGoogle Scholar

  • [45] Rücker J., Wiedner C., Zippel P., 1997, Factors controlling the dominance of Planktothrix agardhii and Limnothrix redekei in eutrophic shallow lakes, Hydrobiologia, 342/343: 107–115 http://dx.doi.org/10.1023/A:1017013208039CrossrefGoogle Scholar

  • [46] Rantala-Ylinen A., Kana S., Wang H, Rouhiainen L., Wahlsten M., Rizzi E., Berg K., Gugger M., Sivonen K., 2011, Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. Strain 37 and molecular methods to detect potential producers. Appl. Environ. Microbiol., 77: 7271–7278 http://dx.doi.org/10.1128/AEM.06022-11CrossrefGoogle Scholar

  • [47] Rymuszka A., Sierosławska A., 2010, Study on apoptotic effects of neurotoxin anatoxin-a on fish immune cells, Neuro. Endocrinol. Lett., 31Suppl. 2: 11–15 Google Scholar

  • [48] Sivonen K., Himberg K., Luukkainen R., Niemela S.I., Poon G.K., Codd G.A., 1989, Preliminary Characterization of neurotoxic cyanobacteria blooms and strains from Finland, Toxicol. Assess., 4: 339–352 http://dx.doi.org/10.1002/tox.2540040310CrossrefGoogle Scholar

  • [49] Sivonen K., Niemelä S.I., Niemi R.M., Lepistö L., Luoma T.H., Räsänen L.A., 1990, Toxic cyanobacteria (blue-green algae) in Finnish fresh and coastal waters, Hydrobiologia, 190: 267–275 http://dx.doi.org/10.1007/BF00008195CrossrefGoogle Scholar

  • [50] Smith et al. 2008 Google Scholar

  • [51] Sotero-Santos R.B., Dellamano-Oliveira M.J., Carvalho E.G., Rocha O., 2008, Composition and toxicity of cyanobacterial bloom in a tropical reservoir. Harmful Algae, 7/5: 590–598 http://dx.doi.org/10.1016/j.hal.2007.12.017CrossrefGoogle Scholar

  • [52] Toporowska M., Pawlik-Skowrońska B., Krupa D., Kornijów R., 2010, Winter versus summer blooming of phytoplankton in a shallow lake: effect of hypertrophic conditions, Pol. J. Ecol., 58: 159–168 Google Scholar

  • [53] Utermöhl H., 1958, Zur Vervollkommung der quantitative Phytoplanktonmethodik, Mitt. Internat. Verein. Limnol., 2: 1–38 Google Scholar

  • [54] Van Apeldoorn M.E., van Egmond H.P., Speijers G.J.A., Bakker G.J.I., 2007, Toxins of cyanobacteria. A review, Mol. Nutr. Food Res., 51: 7–60 http://dx.doi.org/10.1002/mnfr.200600185CrossrefGoogle Scholar

  • [55] Welker M., Döhren H., 2006, Cyanobacterial peptides — nature’s own combinatorial biosynthesis, FEMS Microbiol. Rev., 30: 530–563 http://dx.doi.org/10.1111/j.1574-6976.2006.00022.xCrossrefGoogle Scholar

  • [56] WHO, 1999, Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management, Routledge London and New York Google Scholar

  • [57] Wilson A.E., Sarnelle O., Tillmanns A.R., 2006, Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta-analyses of laboratory experiments, Limnol. Oceanogr., 51: 1915–1924 http://dx.doi.org/10.4319/lo.2006.51.4.1915CrossrefGoogle Scholar

  • [58] Zhang D., Xie P., Chen Y., Dai M., Qiu T., Liu Y., Liang G., 2009, Determination of microcystin-LR and its metabolites in snail (Bellemya aeruginosa), shrimp (Macrobrachium nipponensis) and silver carp (Hypophthalmichthys molitrix) from lake Taihu, China, Chemosphere, 76: 974–981 http://dx.doi.org/10.1016/j.chemosphere.2009.04.034CrossrefGoogle Scholar

  • [59] Xie L.Q., Xie P., Guo L.G., Li L., Miyabara Y., Park H.D., 2005, Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China, Environ. Toxicol., 20: 293–300 http://dx.doi.org/10.1002/tox.20120CrossrefGoogle Scholar

  • [60] Xie L., Xie P., Ozawa K., Honma T., Yokoyama A., Park H-D., 2004, Dynamics of microcystins-LR and _RR in the phytoplanktivorous silver carp in a sub-chronic toxicity experiment. Environ. Pollut. 127: 431–439 http://dx.doi.org/10.1016/j.envpol.2003.08.011CrossrefGoogle Scholar

About the article

Published Online: 2012-11-06

Published in Print: 2012-12-01

Citation Information: Oceanological and Hydrobiological Studies, Volume 41, Issue 4, Pages 53–65, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-012-0039-6.

Export Citation

© 2012 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Magdalena Toporowska, Beata Ferencz, and Jarosław Dawidek
Ecohydrology, 2018, Page e2017
Renata Dondajewska, Anna Kozak, Agnieszka Budzyńska, Katarzyna Kowalczewska-Madura, and Ryszard Gołdyn
Ecohydrology & Hydrobiology, 2018
Natalie M. Flores, Todd R. Miller, and Jason D. Stockwell
Frontiers in Marine Science, 2018, Volume 5
Fatima Haque, Sara Banayan, Josephine Yee, and Yi Wai Chiang
Chemosphere, 2017, Volume 183, Page 164
Soheila Rezaitabar, Abbas Esmaili Sari, Nader Bahramifar, and Zohreh Ramezanpour
Science of The Total Environment, 2017, Volume 575, Page 1130
Séverine Le Manach, Nour Khenfech, Hélène Huet, Qin Qiao, Charlotte Duval, Arul Marie, Gérard Bolbach, Gilles Clodic, Chakib Djediat, Cécile Bernard, Marc Edery, and Benjamin Marie
Environmental Science & Technology, 2016, Volume 50, Number 15, Page 8324
Barbara Pawlik-Skowronska and Magdalena Toporowska
Hydrobiologia, 2016, Volume 778, Number 1, Page 45
Feng Zhang, Jiyoung Lee, Song Liang, and CK Shum
Environmental Health, 2015, Volume 14, Number 1
Justyna Kobos, Agata Błaszczyk, Natalia Hohlfeld, Anna Toruńska-Sitarz, Anna Krakowiak, Agnieszka Hebel, Katarzyna Sutryk, Magdalena Grabowska, Magdalena Toporowska, Mikołaj Kokociński, Beata Messyasz, Andrzej Rybak, Agnieszka Napiórkowska-Krzebietke, Lidia Nawrocka, Aleksandra Pełechata, Agnieszka Budzyńska, Paweł Zagajewski, and Hanna Mazur-Marzec
Oceanological and Hydrobiological Studies, 2013, Volume 42, Number 4
Ryszard Gołdyn, Stanisław Podsiadłowski, Renata Dondajewska, and Anna Kozak
Ecohydrology & Hydrobiology, 2014, Volume 14, Number 1, Page 68
European Journal of Entomology, 2014, Volume 111, Number 1, Page 83
Barbara Pawlik-Skowrońska, Renata Kalinowska, and Tadeusz Skowroński
Harmful Algae, 2013, Volume 28, Page 118

Comments (0)

Please log in or register to comment.
Log in