Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

4 Issues per year

IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

See all formats and pricing

Access brought to you by:

provisional account

More options …
Volume 44, Issue 1


The three-spined stickleback (Gasterosteus aculeatus) infection with Schistocephalus solidus in Hel marina (Puck Bay, Baltic Sea, Poland)

Zdeněk Mačát
  • Corresponding author
  • Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adam Bednařík
  • Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Rulík
  • Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-13 | DOI: https://doi.org/10.1515/ohs-2015-0002


Parasitic relations between animals are very common in wild nature. In this paper, we studied levels of infection in three-spined stickleback with plerocercoids of Schistocephalus solidus from Puck Bay (Baltic Sea, Poland). The total prevalence of infection was 54.2%, while proportion of infected individuals was significantly higher for females than for males. The body width was found to be significantly positively correlated with the number and the weight of parasites. In spite of the increasing deterioration of the Baltic Sea ecosystem by excessive eutrophication and hypoxia, lower prevalence of infection compared to previous published data indicates that there are likely other factors than pollution affecting the life cycle of parasites and the level of parasitism.

Keywords : parasite; infection prevalence; Schistocephalus solidus; three-spined stickleback; Puck Bay


  • Bańbura, J. (1994). Lateral plate morph differentiation on freshwater and marine populations of the three-spined stickleback, Gasterosteus aculeatus, in Poland. Journal of Fish Biology. 44: 773-783.Google Scholar

  • Barber, I. (2013). Sticklebacks as model hosts in ecological and evolutionary parasitology. Trends in Parasitology. 29: 556-566. DOI 10.1016/j.pt.2013.09.004.CrossrefGoogle Scholar

  • Barber, I. & Huntingford, F.A. (1995). The effect of Schistocephalus solidus (Cestoda: Pseudophyllidea) on the foraging and shoaling behaviour of three-spinned sticklebacks, Gasterosteus aculeatus. Behaviour. 132: 1223-1240.Google Scholar

  • Barber, I. & Scharsack, J.P. (2010). The three-spined stickleback- Schistocephalus solidus system: an experimental model for investigating host-parasite interactions in fish. Parasitology. 137: 411-424. DOI 10.1017/S0031182009991466.CrossrefGoogle Scholar

  • Bergersen, R. (1996). Sticklebacks from Greenland. Journal of Fish Biology. 48: 799-801.Google Scholar

  • Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology. 83: 575-583.Google Scholar

  • Carstensen, J., Andersen, J.H., Gustafsson, B.G. & Conley, D.J. (2014a). Deoxygenation of the Baltic Sea during last century. Proceedings of the National Academy of Sciences of the United States of America. 111: 5628-5633. DOI 10.1073/ pnas.132315611.CrossrefGoogle Scholar

  • Carstensen, J., Conley, D.J., Bonsdorff, E., Gustafsson, B.G., Hietanen, S., Janas, U., Jilbert, T., Maximov, A., Norkko, A., Norkko, J., Reed, D.C., Slomp, C.P., Timmermann, K. & Voss, M. (2014b). Hypoxia in the Baltic Sea: Biogeochemical cycles, benthic fauna, and management. AMBIO: A Journal of the Human Environment. 43: 26-36. DOI 10.1007/s13280-013-0474-7.CrossrefGoogle Scholar

  • Chappell, L.H. (1969). The Parasites of the Three-spined Stickleback Gasterosteus aculeatus L. from a Yorkshire Pond. I. Seasonal Variation of Parasite Fauna. Journal of Fish Biology. 1: 137-152.Google Scholar

  • Chubb, J.C., Ball, M.A. & Parker, G.A. (2009). Living in intermediate hosts: evolutionary adaptations in larval helminths. Trends in Parasitology. 26: 93-102. DOI 10.1016/j. pt.2009.11.008.CrossrefGoogle Scholar

  • Clarke, A.S. (1954). Studies on the life cycle of the pseudophyllidean cestode Schistocephalus solidus. Proceedings of the Zoological Society of London. 124: 257-302.Google Scholar

  • Confer, A., Vu, V., Drevecky, C.J. & Aguirre, W.E. (2012). Occurrence of Schistocephalus solidus in anadromous threespine stickleback. Journal of Parasitology. 98: 676-678. DOI 10.1645/GE-2968.1.CrossrefGoogle Scholar

  • Conley, D.J. (2012). Save the Baltic Sea. Nature. 486: 463-464. DOI 10.1038/486463a.CrossrefGoogle Scholar

  • Dingemanse, N.J., Oosterhof, Ch., Van der Plas, F. & Barber I. (2009). Variation in stickleback head morphology associated with parasite infection. Biological Journal of the Linnean Society. 96: 759-768. DOI 10.1111/j.1095-8312.2008.01179.x.CrossrefGoogle Scholar

  • Giles, N. (1983). Behavioural effects of the parasite Schistocephalus solidus (Cestoda) on an intermediate host, the three-spined stickleback, Gasterosteus aculeatus L. Animal Behaviour. 31: 1192-1194.CrossrefGoogle Scholar

  • Hendry, A.P., Peichel, C.L., Matthews, B., Boughman, J.W. & Nosil, P. (2013). Stickleback research: the now and the next. Evolutionary Ecology Research. 15: 1-31.Google Scholar

  • Heins, D.C. & Baker, J.A. (2008). The stickleback-Schistocephalus host-parasite system as a model for understanding the effect of a macroparasite on host reproduction. Behaviour. 145: 625-645. DOI 10.1163/156853908792451412.CrossrefGoogle Scholar

  • Hoberg, E.P., Henny, C.J., Hedstrom, O.R. & Grove, R.A. (1997). Intestinal helminths of river otters (Lutra canadensis) from the Pacific Northwest. Journal of Parasitology. 83: 105-110.Google Scholar

  • Hopkins, C.A. & Smyth, J.D. (1951). Notes on the morphology and life history of Schistocephalus solidus (Cestoda, Diphyllobothriidae). Parasitology. 41: 283-291.PubMedCrossrefGoogle Scholar

  • Jäger, I. & Schjorring, S. (2006). Multiple infections: Relatedness and time between infections affect the establishment and growth of the cestode Schistocephalus solidus in its stickleback host. Evolution. 60(3): 616-622. DOI: 10.1111/ j.0014-3820.2006.tb01141.xPubMedGoogle Scholar

  • Jakobsen, J. (2011). Parasite communities of two three-spined stickleback (Gasterosteus aculeatus) populations - Effects of a local-scale host introduction? MS thesis in Biology, University of Tromso, 43 pp.Google Scholar

  • Kautsky, N., Kautsky, H., Kautsky, U. & Waern, M. (1986). Decreased depth penetration of Fucus vesiculosus since the 1940’s indicates eutrophication of the Baltic Sea. Marine Ecology Progress Series. 28: 1-8.CrossrefGoogle Scholar

  • Lafferty, K.D. (1997). Environmental parasitology: What can parasites tell us about human impacts on the environment? Parasitology Today. 13: 251-255.CrossrefGoogle Scholar

  • Leppákoski, E. & Olenin, S. (2000). Non-native species and rates of spread: lessons from the brackish Baltic Sea. Biological Invasions. 2: 151-163. DOI 10.1023/A:1010052809567.CrossrefGoogle Scholar

  • Lobue, C.P. & Bell, M.A. (1993). Phenotypic manipulation by the cestode parasite Schistocephalus solidus of its intermediate host, Gasterosteus aculeatus, the threespine stickleback. The American Naturalist. 142: 725-735.Google Scholar

  • Mackenzie, K. (1999). Parasites as pollution indicators in marine ecosystems: a proposed Early Warning System. Marine Pollution Bulletin. 38(11): 955-959. DOI 10.1016/S0025-326X(99)00100-9.CrossrefGoogle Scholar

  • MacColl, A.D.C. (2009). Parasite burdens differ between sympatric three-spined stickleback species. Ecography. 32: 153-160. DOI 10.1111/j.1600-0587.2008.05486.x.CrossrefGoogle Scholar

  • Marcogliese, D.J. (2005). Parasites of the superorganism: Are they indicators of ecosystem health? International Journal for Parasitology. 35: 705-716. DOI 10.1016/j.ijpara.2005.01.015.CrossrefGoogle Scholar

  • Moore, J. (2002). Parasites and the behavior of animals. Oxford: Oxford University Press.Google Scholar

  • Morozińska-Gogol, J. (2006). A checklist of parasites recorded on stickleacks (Actinopterygii: Asterosteidae) from Poland. Parasitology International. 55: 69-73. DOI 10.1016/j. parint.2005.10.002.CrossrefGoogle Scholar

  • Morozińska-Gogol, J. (2011). Changes in levels of infection with Schistocephalus solidus (Muller, 1776) of the threespined stickleback Gasterosteus aculeatus (Actinopterygii: Gasterosteidae) from the Gdynia Marina. Oceanologia. 53: 181-187. DOI 10.5697/oc.53-1.181.CrossrefGoogle Scholar

  • NatureServe (2013). Gasterosteus aculeatus. The IUCN Red List of Threatened Species. Version 2014.2. Retrieved November 04, 2014, from www.iucnredlist.orgGoogle Scholar

  • Ness, J.H. & Foster, S.A. (1999). Parasite-associated phenotype modifications in threespine stickleback. Oikos. 85: 127-134.CrossrefGoogle Scholar

  • Ojaveer, H. & Kotta, J. (2006). Alien invasive species in the northeaster Baltic Sea: populatiomn dynamics and ecological impacts. Estonian Marine Institute Report No. 14: 64 pp.Google Scholar

  • Paavola, M., Olenin, S. & Leppakoski, E. (2005). Are invasive species most successful in habitats of low native species richness across European brackish water seas? Estuarine, Coastal and Shelf Science. 64: 738-750. DOI 10.1016/j. ecss.2005.03.021.CrossrefGoogle Scholar

  • Poulin, R., Blanar, C.A., Thieltges, D.W. & Marcogliese, D.J. (2011). The biogeography of parasitism in sticklebacks: distance, habitat differences and the similarity in parasite occurrence and abundance. Ecography. 34: 540-551. DOI 10.1111/j.1600-0587.2010.06826.x.CrossrefGoogle Scholar

  • Poulin, R. & Thomas, F. (1999). Phenotypic variability induced by parasites: extent and evolutionary implications. Prasitology Today. 15: 28-32.CrossrefGoogle Scholar

  • Ranta, E. (1995). Schistocephalus infestation improves preysize selection by three-spined sticklebacks, Gasterosteus aculeatus. Journal of Fish Biology. 46: 156-158.Google Scholar

  • Reimchen, T.E. & Nosil, P. (2001). Ecological causes of sex-biased parasitism in threespine stickleback. Biological Journal of the Linnean Society. 73: 51-63. DOI: 10.1111/j.1095-8312.2001. tb01346.x Reimer, L.W. (1995). Parasites especially of piscean hosts as indicators of the eutrophication in the Baltic Sea. Applied Parasitology. 36: 124-135.Google Scholar

  • Rolbiecki, L., Rokicki, J., Morozińska-Gogol, J. & Chibani, M. (1999). Larval stages of helminths in fish from the Vistula Lagoon and the Gulf of Gdańsk in relation to bird occurrence. Bulletin of the Sea Fisheries Institute. 147: 51-60.Google Scholar

  • Ronnberg, C. & Bonsdorff, E. (2004). Baltic Sea eutrophication: area-specific ecological consequences. Hydrobiologia. 514: 227-241, DOI 10.1007/978-94-017-0920-0_21.CrossrefGoogle Scholar

  • Rozsa, L., Reiczigel, J. & Majoros, G. (2000). Quantifying parasites in samples of hosts. Journal of Parasitology. 86: 228-232, DOI 10.1645/0022-3395(2000)086[0228:QPISOH]2.0. CO;2.CrossrefGoogle Scholar

  • StatSoft, Inc. (2013). STATISTICA (data analysis software system), version 12. Retrieved November 04, 2014, from www.statsoft.com.Google Scholar

  • Sures, B. (2004). Environmental parasitology: relevancy of parasites in monitoring environmental pollution. Trends in Parasitology. 20: 170-177. DOI 10.1016/j.pt.2004.01.014.CrossrefGoogle Scholar

  • Tierney, J.F. (1994). Effects of Schistocephalus solidus (Cestoda) on the food intake and diet of the three-spined stickleback, Gasterosteus aculeatus. Journal of Fish Biology. 44: 731-735.Google Scholar

  • Valtonen, E.T., Pulkkinen, K., Poulin, R. & Julkunen, M. (2001). The structure of parasite component communities in brackish water fishes of the northeastern Baltic Sea. Parasitology. 122: 471-481.Google Scholar

  • Wootton, R.J. (1976). The biology of the sticklebacks. London: Academic Press.Google Scholar

  • Zander, C.D. (1998). Ecology of host parasite relationships in the Baltic Sea. Naturwissenschaften. 85: 426-36.CrossrefPubMedGoogle Scholar

  • Zander, C.D. (2007). Parasite diversity of sticklebacks from the Baltic Sea. Parasitology Research. 100: 287-297. DOI 10.1007/ s00436-006-0282-0.PubMedCrossrefGoogle Scholar

  • Zander, C.D. & Kesting, V. (1996). The indicator properties of parasites communities of gobies (Teleostei, Gobiidae) from Kiel and Lubeck Bight. Applied Parasitology. 37: 186-204.Google Scholar

  • Zander, C.D. & Reimer, L.W. (2002). Parasitism at the ecosystem level in the Baltic Sea. Parasitology. 124: 119-135. DOI 10.1017/S0031182002001567.CrossrefGoogle Scholar

  • Zander, C.D., Strohbach, U. & Groenewold, S. (1993). The importance of gobies (Gobiidae, Teleostei) as hosts and transmitters of parasites in the SW Baltic. Helgoländer Meeresuntersuchungen. 47: 81-111. DOI 10.1007/ BF02366186.CrossrefGoogle Scholar

About the article

Received: 2014-11-07

Accepted: 2014-12-11

Published Online: 2015-03-13

Published in Print: 2015-03-01

Citation Information: Oceanological and Hydrobiological Studies, Volume 44, Issue 1, Pages 11–17, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2015-0002.

Export Citation

© 2015 Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Chloé Suzanne Berger and Nadia Aubin-Horth
The Journal of Experimental Biology, 2018, Volume 221, Number 9, Page jeb178137

Comments (0)

Please log in or register to comment.
Log in