Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina

IMPACT FACTOR 2018: 1.005

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.237
Source Normalized Impact per Paper (SNIP) 2018: 0.541

ICV 2017: 162.45

Open Access
See all formats and pricing
More options …
Volume 2, Issue 1


Volume 13 (2015)

Mass-transport driven by surface instabilities in metals under reactive plasma/ion beam treatment at moderate temperature

Liudvikas Pranevičius / Darius Milčius / Liudas Pranevičius
  • Vytautas Magnus University, 8 Vileikos St., LT-3035, Kaunas, Lithuania
  • Lithuanian Energy Institute, 3 Breslaujos St., LT-3035, Kaunas, Lithuania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vaiva Širvinskaitë / Jurgita Nomgaudyte / Jean-Paul Rivier / Claude Templier
Published Online: 2004-03-01 | DOI: https://doi.org/10.2478/BF02476273


This paper presents a generalized approach to the mechanisms of oxidation, hydrogenation and nitriding of metals under ion irradiation with reactive particles at elevated temperatures. Experimental results on the plasma oxidation of bilayered Y/Zr films, the plasma hydrogenation of Mg films and the ion beam (1.2 keV N2+) nitriding of stainless steel are presented and discussed. We make special emphasis on the analysis of surface effects and their role in the initiation of mixing of bilayered films, the ingress of reactive species in the bulk and the restructuring of the surface layers. It is suggested that primary processes driving reactive atoms from the surface into the bulk are surface instabilities induced by thermal and ballistic surface atom relocations under reactive adsorption and ion irradiation, respectively. The diffusion of adatoms and vacancies, at temperature when they become mobile, provide the means to relax the surface energy. It is recognized that the stabilizing effect of surface adatom diffusion is significant at temperatures below 300–350°C. As the temperature increases, the role of surface adatom diffusion decreases and processes in the bulk become dominant. The atoms of subsurface monolayers occupy energetically favorable sites on the surface, and result in reduced surface energy.

Keywords: oxidation; hydrogenation; nitriding; mechanisms; surface relocations; mixing; restructuring; PACS (2000); 68.35.Ja; 81.65.-b

  • [1] R. Hanngsrud: “On high temperature oxidation of nickel”, Corrosion Science, Vol. 45, (2003), pp. 211–235. http://dx.doi.org/10.1016/S0010-938X(02)00085-9CrossrefGoogle Scholar

  • [2] G. Majer, J. Gottwald, D.T. Peterson and R.G. Barnes: “Model-independent measurements of hydrogen diffusivity in the yttrium dehydrides”, J. Alloys. Compounds, Vol. 330–332, (2002), pp. 438–442. http://dx.doi.org/10.1016/S0925-8388(01)01452-9CrossrefGoogle Scholar

  • [3] D.L. Williamson, J.A. Daris, P.J. Wilbur, J.J. Vako, R. Wei and J. N. Natosian: “Relative roles of ion energy, ion flux sample temperature in low-energy ion implantation of Fe−Cr−Ni stainless steel”, Nucl. Instrum. Meth. Phs. Res. B, Vol. 127–128, (1997), pp. 930–934. http://dx.doi.org/10.1016/S0168-583X(97)00033-5CrossrefGoogle Scholar

  • [4] G. Thorward, S. Mandl and B. Ranschenback: “Rutile formation and oxygen diffusion in oxygen PIII-treated titanium”, Surface and Coatings technology, Vol. 136., (2001), pp. 236–240. http://dx.doi.org/10.1016/S0257-8972(00)01021-5CrossrefGoogle Scholar

  • [5] D.A. Komarov, A.V. Markin, S.Yu. Rybakov and A.P. Zakharov: “Role of grain boundaries and carbon deposition in deuterium retention behavior of deuterium plasma exposed tungsten”, J. Nucl. Materials, Vol. 290–293, (2001), pp. 433–436. http://dx.doi.org/10.1016/S0022-3115(00)00511-0CrossrefGoogle Scholar

  • [6] F. Czerwinski: “The oxidation behavior of an AZ91D magnesium alloy at high temperatures”, Acta Materialia, Vol. 50., (2002), pp. 2639–2654. http://dx.doi.org/10.1016/S1359-6454(02)00094-0CrossrefGoogle Scholar

  • [7] P. Fielitz, G. Borchardtt, M. Schmucker, H. Schneider and P. Willich: “Measurement of oxygen grain boundary diffusion in mullite ceramics by SIMS depth profiling”, Applied Surface Science, Vol. 248, (2001), pp. 1–5. Google Scholar

  • [8] G. Majer, U. Eberle, F. Kimmerle, E. Stanik and S. Orimo: “Hydrogen diffusion in metallic and naostrustured materials”, Physica B., Vol. 328, (2003), pp. 81–89. http://dx.doi.org/10.1016/S0921-4526(02)01815-XCrossrefGoogle Scholar

  • [9] P. Kofstad: High Temperature Corrosion, Elsevier Applied Science, London, New York, 1988. Google Scholar

  • [10] W. Möler, S. Parascandola, T. Telbizova, R. Günzel and E. Richter: “Surface processes and diffusion mechanisms of ion nitriding of stainless steel and aliminium”, Surface. Coat. Technol., Vol. 136, (2001), pp. 73–79. http://dx.doi.org/10.1016/S0257-8972(00)01015-XCrossrefGoogle Scholar

  • [11] V. Stankus, J. Dudonis, L. Pranevicius, L.L. Pranevicius, D. Milcius, C. Templier and J.-P. Riviere: “On the mechanism of synthesis of PbTiO3 films”, Thin Solid Films, Vol. 426, (2003), pp. 78–84. http://dx.doi.org/10.1016/S0040-6090(02)01131-8CrossrefGoogle Scholar

  • [12] L. Pranevicius, D. Milcius, L.L. Pranevicius, C. Templier, V. Sirvinskaite and R. Knizikevicius: “Role of surface instabilities in mixing and oxidation kinetics of bilayered Y/Zr films at elevated temperature”, Surf. Appl. Sc., (2003), in press. Google Scholar

  • [13] K. Tanaka, H. Tanaka and H Kawaguchi: “Effects of hydrogenation on interlayer reactions in metallic multilayers”, J. Alloys and Compounds, Vol. 330–332, (2002), pp. 256–261. http://dx.doi.org/10.1016/S0925-8388(01)01665-6CrossrefGoogle Scholar

  • [14] G. Thomas, L. Pranevicius, D. Milcius and L. L. Pranevicius: “Plasma hydriding of aluminum and magnesium thin films for hydrogen storage applications”, In: Proceedings III Intern. Symposium: New Electrical and Electronic Technologies, Zakopane, Poland, 2003. Google Scholar

  • [15] S.V. Fortuna, Y.P. Sharkeev, A.P. Perry, J.N. Matossian and A. Shuleopov: “Microstructural features of wear-resistant titanium nitride coatings deposited by different methods”, Thin Solid Films, Vol. 377–378, (2000) pp. 512–517. http://dx.doi.org/10.1016/S0040-6090(00)01438-3CrossrefGoogle Scholar

  • [16] J.P. Rivier, P. Meheust, J.P. Willain, C. Templier, M. Cahorean, G. Abrasonis, L. Pranevicius: “High current density nitrogen implantation of an austenitic stainless steel”, Surf. Coat. Technol., Vol. 158–159, (2002), pp. 99–104. http://dx.doi.org/10.1016/S0257-8972(02)00227-XCrossrefGoogle Scholar

  • [17] L. Pranevicius: Coating Technology: Ion Beam Deposition, Satas and Associates, Warwick, Rhode Island, 1993. Google Scholar

  • [18] F. Tsui, J. Wellman, C. Uher and R. Clark: “Morphology of thin films depositied by DC sputtering”, Phys. Rev. Lett., Vol. 76, (1996), pp. 3164–3168. http://dx.doi.org/10.1103/PhysRevLett.76.3164CrossrefGoogle Scholar

  • [19] J.A. Floro, E. Chason, R.C. Commarata and D. Srolovitz: “Physical origins of intrinsic stresses in Vomer-Weber thin films”, MRS Bulletin, Vol. 27(1), (2002), pp. 19–25. CrossrefGoogle Scholar

  • [20] O. Kraft, L.B. Freund, R. Phillips and E. Arzt: “Dislocation plasticity in thin metal films”, MRS Bulletin, Vol. 27(1), (2002), pp. 30–37. CrossrefGoogle Scholar

  • [21] P. Meheust: Implantation ionique d'azote a basse energie et flux eleve dans l'acier austenitique 304 L, These doctorale, Poitiers University, 2000. Google Scholar

  • [22] G.A. Samorjai: “From surface materials to surface technologies”, MRS Bulletin, Vol. 23(5), (1999), pp. 11–29. Google Scholar

  • [23] H. Onishi and Y. Iwasawa: “STM observation of surface reaction on metal oxide”, Surface Science, Vol. 357–358, (1996), pp. 773–776. http://dx.doi.org/10.1016/0039-6028(96)00262-2CrossrefGoogle Scholar

  • [24] P. Bellon and R.A. Enrique: “Interface stability and self-organization of precipitates under irradiation”, Nucl. Instrum. Meth. Phys. Res. B., Vol. 178, (2001), pp. 1–6. http://dx.doi.org/10.1016/S0168-583X(00)00500-0CrossrefGoogle Scholar

  • [25] R.H. Swedsen: “Thermal roughening effect”, Phys. Rev. B., Vol. 15, (1977), pp. 542. Google Scholar

  • [26] L. Pranevicius, C. Templier, J. Delafond and S. Muzard: “Simulation of interface effects during simultaneous deposition and ion, irradiation”, Surf. Coat. Technol., Vol. 72, (1995), pp. 51–61. http://dx.doi.org/10.1016/0257-8972(94)02330-SCrossrefGoogle Scholar

  • [27] T. Seki, T. Aoki, J. Matsuo and I. Yamada: “STM observation of surface vacancies created by ion impact”, Nucl. Instrum. Meth. Phys. Res. B, Vol. 164/165, (2000), pp. 650–655. http://dx.doi.org/10.1016/S0168-583X(99)01112-XCrossrefGoogle Scholar

  • [28] D. Porath, Y. Goldstein, A. Grayevsky and O. Millo: “Scanning tunneling microscopy studies of annealing of gold films”, Surface Science, Vol. 321, (1994), pp. 81–88. http://dx.doi.org/10.1016/0039-6028(94)90028-0CrossrefGoogle Scholar

  • [29] J. Chaiken and J. Goodisman: “Use of fractals and kinetic equations to model thermally induced hillock formation and growth in thin films”, Thin Solid Films, Vol. 260, (1995), pp. 243–251. http://dx.doi.org/10.1016/0040-6090(94)06479-2CrossrefGoogle Scholar

  • [30] P. Fielitz, G. Borchardt, M. Schmucker, H. Schneider and P. Willich: “Measurement of oxygen grain boundary diffusivities of oxygen in polycrystalline oxides”, Applied Surface Science, Vol. 203–204, (2003), pp. 639–643. http://dx.doi.org/10.1016/S0169-4332(02)00641-4CrossrefGoogle Scholar

  • [31] Y.P. Sharkeev, B.P. Gritsenko, S.V. Fortuna and A.J. Pery: “Modification of metallic materials and hard coatings using metal ion implantation”, Vacuum, Vol. 52, (1999), pp. 247–254. http://dx.doi.org/10.1016/S0042-207X(98)00198-5CrossrefGoogle Scholar

About the article

Published Online: 2004-03-01

Published in Print: 2004-03-01

Citation Information: Open Physics, Volume 2, Issue 1, Pages 67–89, ISSN (Online) 2391-5471, DOI: https://doi.org/10.2478/BF02476273.

Export Citation

© 2004 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

L. Pranevicius, L.L. Pranevicius, D. Milcius, C. Templier, and B. Bobrovaite
Fusion Engineering and Design, 2008, Volume 83, Number 1, Page 90

Comments (0)

Please log in or register to comment.
Log in