Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences


IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
Online
ISSN
2081-8262
See all formats and pricing
More options …

Clonal growth forms in Arctic plants and their habitat preferences: a study from Petuniabukta, Spitsbergen

Jitka Klimešová
  • Corresponding author
  • Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, CZ-379 82 Třeboň, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jiří Doležal
  • Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, CZ-379 82 Třeboň, Czech Republic
  • Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karel Prach
  • Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, CZ-379 82 Třeboň, Czech Republic
  • Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jiří Košnar
  • Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-12-28 | DOI: https://doi.org/10.2478/v10183-012-0019-y

Abstract

The ability to grow clonally is generally considered important for plants in Arctic regions but analyses of clonal characteristics are lacking for entire plant communities. To fill this gap, we assessed the clonal growth of 78 plant species in the Petuniabukta region, central Spitsbergen (Svalbard), and analyzed the clonal and other life-history traits in the re- gional flora and plant communities with respect to environmental gradients. We distin- guished five categories of clonal growth organs: perennial main roots produced by non- clonal plants, epigeogenous rhizomes, hypogeogenous rhizomes, bulbils, and stolons. Clonal growth differed among communities of the Petuniabukta region: non-clonal plants prevailed in open, early-successional communities, but clonal plants prevailed in wetlands. While the occurrence of plants with epigeogenous rhizomes was unrelated to stoniness or slope, the occurrence of plants with hypogeogenous rhizomes diminished with increasing stoniness of the substratum. Although the overall proportion of clonal plants in the flora of the Petuniabukta region was comparable to that of central Europe, the flora of the Petunia- bukta region had fewer types of clonal growth organs, a slower rate of lateral spread, and a different proportion of the two types of rhizomes.

Keywords : Arctic; Svalbard; vascular plants; clonal growth; substrate

  • ALEXANDROVA V.D. 1983. Vegetation of polar deserts of USSR. Nauka, Leningrad: 141 pp.Google Scholar

  • BARKMAN J.J. 1988. New systems of plant growth forms and phenological plant types. In: M.J.A. Werger, P.J.M. van der Aart, H.J. During and J.T.A. Verhoeven (eds) Plant form and vegetation structure. SPB Academic Publishing, The Hague: 9-44.Google Scholar

  • BAUERT M.R. 1996. Genetic diversity and ecotypic differentiation in Arctic and alpine populations of Polygonum viviparum. Arctic and Alpine Research 28: 190-195.CrossrefGoogle Scholar

  • CALLAGHAN T.V. and EMANUALSON U. 1985. Population structure and processes of tundra plants and vegetation. In: J. White (ed.) The population structure of vegetation. Junk Publishing, Dordrecht: 399-439.Google Scholar

  • CALLAGHAN T.V., JONASSON S. and BROOKER R.W. 1997. Arctic clonal plants and global change. In: H. de Kroon and J.M. van Groenendael (eds) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden: 381-403.Google Scholar

  • de Bello F., Doležal j., Dvorský M., Chlumská Z., Řeháková K., Klimešová J. and KLIMEŠ L. 2011. Cushion plants do not facilitate other plants under extreme altitude and dry conditions: evidence from NW Himalaya. Annals of Botany 108: 567-573.CrossrefGoogle Scholar

  • DEN HARTOG C. and SEGAL S. 1964. A new classification of water-plant communities. Acta Bota- nica Neerlandica 13:367-393.Google Scholar

  • DRUDE O. 1887. Deutschlands Pflanzengeographie. Handbuch Deutsch Landes-Volksk 4: 1-502.Google Scholar

  • DU RIETZ G.E. 1931. Life-forms of terrestrial flowering plants. Acta Phytogeographica Suecica 3: 1-95.Google Scholar

  • ElVEBAKK A. and PRESTRUD P. (eds) 1996. A catalogue of Svalbard plants, fungi, algae and cyano­bacteria. Norwegian Polar Institute, Oslo: 395 pp.Google Scholar

  • GIMINGHAM C.H. 1951. The use of life form and growth form in the analysis of community structure, as illustrated by a comparison of two dune communities. Journal of Ecology 39: 396-406.CrossrefGoogle Scholar

  • GRIME J.P. 2006. Trait convergence and trait divergence in herbaceous plant communities: mecha­nisms and consequences. Journal of Vegetation Sciences 17: 255-260.Google Scholar

  • GRISEBACH A. 1872. Die Vegetation der Erde nach ihrer klimatischen Anordnung I, II. W. Engel- mann, Leipzig: 603 pp. and 635 pp.Google Scholar

  • HAGEN D. 2002. Propagation of native Arctic and alpine species with a restoration potential. Polar Research 21: 37-47.CrossrefGoogle Scholar

  • HALLÉ F., OLDEMAN R.A.A. and TOMLINSON P.B. 1978. Tropical trees and forests. An architec­tural analysis. Springer Verlag, New York: 441 pp.Google Scholar

  • HALLOY S. 1990. A morphological classification of plants, with special reference to the New Zealand alpine flora. Journal of Vegetation Science 1: 291-304.CrossrefGoogle Scholar

  • HARTMANN H. 1957. Studien uber die vegetative Fortpflanzung in den Hochalpen. Bischofberger & Co., Buchdruckerei Untertor, Chur: 169 pp.Google Scholar

  • HEJNÝ S. 1960. Okologische Charakteristik der Wasser- und Sumpfpflanzen in der slowakischen Tiefebenen (Donau und Theissgebiet). SAV, Bratislava: 487 pp.Google Scholar

  • HESS E. 1909. Uber die Wuchsformen der alpinen Gerollpflanzen. Arbeit aus dem Botanischen Mu­seum des eidg. Polytechnikum Zurich, Druck von C. Heinrich, Dresden: 170 pp.Google Scholar

  • JONASSON S. and CALLAGHAN T.V. 1992. Root mechanical properties related to disturbed and stressed habitats in the Arctic. New Phytologist 122: 179-186.CrossrefGoogle Scholar

  • JÓNSDÓTTIR I.S. 2011. Diversity of plant life histories in the Arctic. Preslia 83: 281-300.Google Scholar

  • JÓNSDÓTTIR I.S., CALLAGHAN T.V. and HEADLEY A.D. 1996. Resource dynamics within Arctic clonal plants. Ecological Bulletin 45: 53-64.Google Scholar

  • KáSTNER A. and KaRRER G. 1995. Ubersicht der Wuchsformtypen als Grundlage fur deren Erfassung in der “Flora von Osterreich”. Florae Austriacae Novitales 3: 1-51.Google Scholar

  • KJØLNER S., SASTAD S.M. and BROCHMANN C. 2006. Clonality and recombination in the Arctic plant Saxifraga cernua. Botanical Journal of the Linnean Society 152: 209-217.CrossrefGoogle Scholar

  • KLIMEŠ L. 2003. Life-forms and clonality of vascular plants along an altitudinal gradient in E Ladakh (NW Himalayas). Basic and Applied Ecology 4: 317-328.CrossrefGoogle Scholar

  • KLIMEŠ L. 2008. Clonal splitters and integrators in harsh environments of the Trans-Himalaya. Evo­lutionary Ecology 22: 351-367.Google Scholar

  • Klimeš L., Klimešová J., Hendriks R. and van Groenendael J. 1997. Clonal plant architecture: a comparative analysis of form and function. In: H. de Kroon and J. van Groenendael (eds) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden: 1-29.Google Scholar

  • KLIMEŠOVÁ J. and DE Bello F. 2009. CLO-PLA: the database of clonal and bud bank traits of Cen­tral European flora. Journal of Vegetation Sciences 20: 511-516.Google Scholar

  • KLIMEŠOVÁ J. and DOLEŽAL J. 2011. Are clonal plants more frequent in cold environments than elsewhere? Plant Ecology and Diversity 4: 373-378.CrossrefGoogle Scholar

  • KLIMEŠOVÁ J. and KLIMEŠ L. 2006. CLO-PLA3: a database of clonal growth architecture of Cen- tral-European plants. <http://clopla.butbn.cas.cz> 3rd March 2011.Google Scholar

  • KLIMEŠOVÁ J. and KLIMEŠ L. 2008. Clonal growth diversity and bud banks in the Czech flora: an evaluation using the CLO-PLA3 database. Preslia 80: 255-275.Google Scholar

  • Klimešová j., Doležal j., Dvorský M., de Bello F. and Klimeš L. 2011a. Clonal growth forms in eastern Ladakh, Western Himalayas: classification and habitat preferences. Folia Geo- botanica 46: 191-217.Google Scholar

  • KLIMEŠOVÁ j., Doležal J. and SAMMUL M. 2011b. Evolutionary and organismic constraints on the relationship between spacer length and environmental conditions in clonal plants. Oikos 120: 1110-1120.CrossrefGoogle Scholar

  • KOMÁRKOVÁ V. and McKeNDRICK J.D. 1988. Patterns in vascular plant growth forms in Arctic communities and environment at Atkasook, Alaska. In: M.J.A.Werger, P.J.M. van der Aart, H.J. During and J.T.A. Verhoeven (eds) Plant form and vegetation structure: adaptation, plasticity and relation to herbivory. SPB Academic Publishing, The Hague: 45-70.Google Scholar

  • KRUMBIEGEL A. 1998. Growth forms of annual vascular plants in central Europe. Nordic Journal of Botany 18: 563-575.CrossrefGoogle Scholar

  • KRUMBIEGEL A. 1999. Growth forms of biennial and pluriennial vascular plants in central Europe. Nordic Journal of Botany 19: 217-226.CrossrefGoogle Scholar

  • ŁUKASIEWICZ A. 1962. Morfologiczno-rozwojowe typy bylin. Poznańskie Towarzystwo Przyjaciół Nauk, Prace Komisji Biologicznej 27: 1-398.Google Scholar

  • MATVEYEVA N.V. 1994. Floristic classification and ecology of tundra vegetation of the Taymyr paninsula, Northern Siberia. Journal of Vegetation Science 5: 813-828.CrossrefGoogle Scholar

  • NAKHUTSRISHVILI G.S. and GAMTSEMLIDZE Z.G. 1984. Plant life in extreme high mountain condi­tions: with the example from the Central Caucasus. Nauka, Leningrad: 123 pp.Google Scholar

  • PARSONS D.J. 1976. Vegetation structure in the Mediterranean scrub community of California and Chile. Journal of Ecology 64: 435-447.CrossrefGoogle Scholar

  • POKARZHEVSKAYA G.A. 1995. Morphological analyses of alpine communities of the north-western Caucasus. Folia Geobotanica & Phytotaxonomica 30: 197-210.CrossrefGoogle Scholar

  • POLOZOVAT.G. 1981. Life forms of vascular plants in different subzones of the Taimyr Tundra. Bul­letin of the Academy of Sciences of the U.S.S.R, Biological series 56: 265-281.Google Scholar

  • PRACH K., Klimešová j., KOŠNAR j., ReDCHEKO O. and HaIS M. 2012. Variability of contemporary vegetation around Petuniabukta, central Spitsbergen. Polish Polar Research 33 (4): 383-394Google Scholar

  • RaUNKIAER C. 1907. Planterigets Livsformer og deres Betydning for Geografien. Munskgaard, Co­penhagen: 132 pp.Google Scholar

  • Raynolds M.K., Walker D.A., Munger C.A., Vonlanthen C.M. and KADE A.N. 2008. A map analysis of patterned-ground along a north American Arctic Transect. Journal of Geophysical Research-Biogeosciences 113 G3: G03S03.Google Scholar

  • R DEVELOPMENT Core Team 2009. R: A language and environment for statistical computing. ISBN 3-900051-07-0: <http://www.R-project.org>Google Scholar

  • RØNNING O.I. 1996. The flora of Svalbard. Norsk Polarinstitut, Oslo: 184 pp.Google Scholar

  • RUSCH G.M., WiLMANN B., KLIMEŠOVÁ J. and EVJU M. 2011. Do clonal and bud bank traits vary in correspondence with soil properties and resource acquisition strategies? Patterns in alpine com­munities in the Scandian mountains. Folia Geobotanica 46: 237-254.CrossrefGoogle Scholar

  • SEREBRJAKOV I.G. 1964. Zhiznennyje formy vysshikh rastenij i ich izuchenije. In: E.M. Lavrenko and A.A. Korchagin (eds) Field geobotany. Nauka, Moskva: 146-205.Google Scholar

  • SOSNOVÁ M., van DiGGELEN R. and Klimešová J. 2010. Distribution of clonal growth forms in wetlands. Aquatic Botany 92: 33-39.CrossrefGoogle Scholar

  • SOSNOVÁ M., van DIGGELEN R., Macek P. and Klimešová J. 2011. Distribution of clonal growth traits among wetland habitats. Aquatic Botany 95: 88-93.CrossrefGoogle Scholar

  • TER BRAAK C.J.F. and ŠMILAUER P. 1998. CANOCO reference manual and user’s guide to Canoco for Windows. Microcomputer Power, Ithaca: 352 pp.Google Scholar

  • van Groenendael J.M., Klimeš L., Klimešová J. and Hendriks R.J.J. 1996. Comparative ecol­ogy of clonal plants. Philosophical Transactions of Royal Society, London 351: 1331-1339.Google Scholar

  • VON HUMBOLDT A. 1806. Ideen zu einer Phisiognomik der Gewachse. Cotta, Stuttgart: 28 pp.Google Scholar

  • VON LAMPE M. 1999. Vorschlag zur Bezeichnung der Innovations- und Uberdauerungsorgane bei den terrestrischen Stauden Zentraleuropas. Beitrage zur Biologie der Pflanzen 71: 335-367.Google Scholar

  • WARMING E. 1908. The structure and biology of Arctic flowering plants I. Ericineae (Ericaceae, Pirolaceae). Meddelelser om Gronland 36: 2-71.Google Scholar

  • WARMING E. 1909. The structure and biology of Arctic flowering plants IV. Saxifragaceae. Meddelelser om Gronland 36: 172-236.Google Scholar

  • WARMING E. 1923. Okologiens Grundformer. Kongelike Danske Vedenskabernes Selskabs Skrifter, Naturvidenskabelig og Mathematisk Avdelning 8: 120-187.Google Scholar

  • WINKLER E., MARCANTE S. and ERSCHBAMER B. 2010. Demographic Consequences of the Two Reproductive Modes in Poa alpina L. along a Primary Succession Gradient in the Central Alps. Arctic, Antarctic, and Alpine Research 42: 227-235.Google Scholar

  • Google Scholar

About the article

Published Online: 2012-12-28

Published in Print: 2012-12-01


Citation Information: Polish Polar Research, Volume 33, Issue 4, Pages 421–442, ISSN (Online) 2081-8262, ISSN (Print) 0138-0338, DOI: https://doi.org/10.2478/v10183-012-0019-y.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jianqiang Qian, Zhengwen Wang, Jitka Klimešová, Xiaotao Lü, Wennong Kuang, Zhimin Liu, and Xingguo Han
Annals of Botany, 2017, Volume 120, Number 5, Page 755
[2]
Wioleta Kellmann-Sopyła, Justyna Koc, Ryszard J. Górecki, Marcin Domaciuk, and Irena Giełwanowska
Polish Polar Research, 2017, Volume 38, Number 1, Page 83
[3]
Junichi Fujinuma, Buntarou Kusumoto, Takayuki Shiono, and Yasuhiro Kubota
Ecological Research, 2019, Volume 34, Number 5, Page 577
[4]
Wioleta Kellmann-Sopyła and Irena Giełwanowska
Polar Biology, 2015, Volume 38, Number 10, Page 1753
[5]
Xuehua Ye, Shuqin Gao, Zhilan Liu, Yalin Zhang, Zhenying Huang, and Ming Dong
Flora - Morphology, Distribution, Functional Ecology of Plants, 2015, Volume 213, Page 49
[6]
Emma Ladouceur, Costantino Bonomi, Helge Bruelheide, Jitka Klimešová, Sabina Burrascano, Peter Poschlod, Maria Tudela‐Isanta, Pietro Iannetta, Andrea Mondoni, Bernard Amiaud, Bruno E. L. Cerabolini, Johannes Hans C. Cornelissen, Joseph Craine, Frédérique Louault, Vanessa Minden, Kinga Öllerer, Vladimir Onipchenko, Nadejda A. Soudzilovskaia, Borja Jiménez‐Alfaro, and Jodi Price
Journal of Vegetation Science, 2019
[7]
Martha Elizabeth Apple, Macy Kara Ricketts, and Alice Caroline Martin
Journal of Geographical Sciences, 2019, Volume 29, Number 7, Page 1127
[8]
Mukti Ram Poudeyal, Henrik Meilby, Bharat Babu Shrestha, and Suresh Kumar Ghimire
Ecology and Evolution, 2019, Volume 9, Number 13, Page 7726
[9]
Elisa Pellegrini, Francesco Boscutti, Maria De Nobili, and Valentino Casolo
Plant Ecology, 2018, Volume 219, Number 7, Page 823
[10]
Yu Ning, Gao-Jie Wu, Hua Ma, Ju-Lan Guo, Man-Yin Zhang, Wei Li, Yi-Fei Wang, Suo-Lang Duoerji, and David L. Remington
PLOS ONE, 2018, Volume 13, Number 12, Page e0209572
[11]
Jiri Dolezal, Miroslav Dvorsky, Martin Kopecky, Jan Altman, Ondrej Mudrak, Katerina Capkova, Klara Rehakova, Martin Macek, and Pierre Liancourt
Annals of Botany, 2018
[12]
Marianne Philipp, Kjersti Hansen, Dorte Monrad, Henning Adsersen, Hans Henrik Bruun, and Inger Nordal
Nordic Journal of Botany, 2018, Volume 36, Number 7, Page e01721
[13]
Anna E.-Vojtkó, Martin Freitag, Alessandro Bricca, Felipe Martello, Joaquín Moreno Compañ, Martin Küttim, Róbert Kun, Francesco de Bello, Jitka Klimešová, and Lars Götzenberger
Folia Geobotanica, 2017
[14]
Tomáš Herben, Zuzana Nováková, and Jitka Klimešová
Annals of Botany, 2014, Volume 114, Number 2, Page 377
[15]
Arinawa Liz Filartiga, Jitka Klimešová, and Beatriz Appezzato-da-Glória
Folia Geobotanica, 2017
[16]
Jakub Těšitel, Tamara Těšitelová, Alexandra Bernardová, Edita Janková Drdová, Magdalena Lučanová, and Jitka Klimešová
Polar Research, 2014, Volume 33, Number 1, Page 20797
[17]
Duo Ye, Yukun Hu, Minghua Song, Xu Pan, Xiufang Xie, Guofang Liu, Xuehua Ye, Ming Dong, and Francesco de Bello
PLoS ONE, 2014, Volume 9, Number 4, Page e94009
[18]
Jitka Klimešová, Tomáš Herben, and Sándor Bartha
Journal of Vegetation Science, 2015, Volume 26, Number 2, Page 243

Comments (0)

Please log in or register to comment.
Log in