Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Naturforschung B

A Journal of Chemical Sciences

IMPACT FACTOR 2018: 0.961

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.263
Source Normalized Impact per Paper (SNIP) 2018: 0.505

See all formats and pricing
More options …
Volume 73, Issue 11


1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA

Marian Hebenbrock
  • Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jens Müller
  • Corresponding author
  • Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany, Phone: +49 251 83 36006
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-11 | DOI: https://doi.org/10.1515/znb-2018-0089


Two new cationic DNA intercalators, 3-phenyl-1-(6-phenylpyridin-2-yl)-1H-[1,2,4]triazolo[4,3-a]pyridin-4-ium (1a)+ and 1-phenyl-3-(6-phenylpyridin-2-yl)-3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium (1b)+, were synthesized from 2-chloropyridine and 2-chloroquinoline, respectively, in a four-step procedure. Generation of the hydrazine, followed by condensation with an aldehyde to give a hydrazone and subsequent Buchwald-Hartwig amination gave a mixture of E- and Z-configured N,N-functionalized hydrazones. Finally, oxidative cyclisation gave rise to the formation of the cationic DNA intercalators, whose molecular structures were determined by single-crystal X-ray diffraction analysis of the hexafluorophosphate and tribromide salt of (1a)+ and (1b)+, respectively. The intercalative binding of (1a)PF6 and (1b)PF6 to ctDNA was confirmed by means of UV, CD and luminescence spectroscopy, determination of the DNA melting temperature and by rheology measurements.

Keywords: DNA; intercalator

Dedicated to: Professor Werner Uhl on the occasion of his 65th birthday.


  • [1]

    A. A. Almaqwashi, T. Paramanathan, I. Rouzina, M. C. Williams, Nucleic Acids Res. 2016, 44, 3971.CrossrefGoogle Scholar

  • [2]

    L. S. Lerman, J. Mol. Biol. 1961, 3, 18.CrossrefGoogle Scholar

  • [3]

    K. W. Jennette, S. J. Lippard, G. A. Vassiliades, W. R. Bauer, Proc. Natl. Acad. Sci. USA 1974, 71, 3839.CrossrefGoogle Scholar

  • [4]

    B. M. Zeglis, V. C. Pierre, J. K. Barton, Chem. Commun. 2007, 4565.Google Scholar

  • [5]

    A. S. Biebricher, I. Heller, R. F. H. Roijmans, T. P. Hoekstra, E. J. G. Peterman, G. J. L. Wuite, Nat. Commun. 2015, 6, 7304.CrossrefGoogle Scholar

  • [6]

    M. R. Gill, S. N. Harun, S. Halder, R. A. Boghozian, K. Ramadan, H. Ahmad, K. A. Vallis, Sci. Rep. 2016, 6, 31973.CrossrefGoogle Scholar

  • [7]

    N. W. Luedtke, J. S. Hwang, E. Nava, D. Gut, M. Kol, Y. Tor, Nucleic Acids Res. 2003, 31, 5732.CrossrefGoogle Scholar

  • [8]

    L.-M. Tumir, M. Radić Stojković, I. Piantanida, Beilstein J. Org. Chem. 2014, 10, 2930.CrossrefGoogle Scholar

  • [9]

    N. W. Luedtke, Q. Liu, Y. Tor, Chem. Eur. J. 2005, 11, 495.CrossrefGoogle Scholar

  • [10]

    A. Schmidt, M. Baune, A. Hepp, J. Kösters, J. Müller, Z. Naturforsch. 2016, 71b, 527.Google Scholar

  • [11]

    F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 1987, 2, S1.Google Scholar

  • [12]

    E. Subramanian, J. Trotter, C. E. Bugg, J. Cryst. Mol. Struct. 1971, 1, 3.CrossrefGoogle Scholar

  • [13]

    M. Vorlíčková, I. Kejnovská, K. Bednářová, D. Renčiuk, J. Kypr, Chirality 2012, 24, 691.CrossrefGoogle Scholar

  • [14]

    M. Hebenbrock, G. González-Abradelo, C. A. Strassert, J. Müller, Z. Anorg. Allg. Chem. 2018, 644, 671.CrossrefGoogle Scholar

  • [15]

    N. C. Garbett, P. A. Ragazzon, J. B. Chaires, Nat. Protoc. 2007, 2, 3166.CrossrefGoogle Scholar

  • [16]

    D. M. Crothers, Biopolymers 1968, 6, 575.CrossrefGoogle Scholar

  • [17]

    C. V. Kumar, R. S. Turner, E. H. Asuncion, J. Photochem. Photobiol. A 1993, 74, 231.CrossrefGoogle Scholar

  • [18]

    C. A. M. Seidel, A. Schulz, M. H. M. Sauer, J. Phys. Chem. 1996, 100, 5541.CrossrefGoogle Scholar

  • [19]

    N. M. Gandikota, R. S. Bolla, I. V. K. Viswanath, S. Bethi, Asian J. Chem. 2017, 29, 1920.CrossrefGoogle Scholar

  • [20]

    D. G. Calatayud, E. López-Torres, M. A. Mendiola, Eur. J. Inorg. Chem. 2013, 2013, 80.CrossrefGoogle Scholar

  • [21]

    E. L. Romero, R. F. D’Vries, F. Zuluaga, M. N. Chaur, J. Braz. Chem. Soc. 2015, 26, 1265.Google Scholar

  • [22]

    S. M. Landge, E. Tkatchouk, D. Benítez, D. A. Lanfranchi, M. Elhabiri, W. A. Goddard III, I. Aprahamian, J. Am. Chem. Soc. 2011, 133, 9812.CrossrefGoogle Scholar

  • [23]

    G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.Google Scholar

About the article

Received: 2018-05-11

Accepted: 2018-05-13

Published Online: 2018-08-11

Published in Print: 2018-11-27

Citation Information: Zeitschrift für Naturforschung B, Volume 73, Issue 11, Pages 885–893, ISSN (Online) 1865-7117, ISSN (Print) 0932-0776, DOI: https://doi.org/10.1515/znb-2018-0089.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in