Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus


IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 1.021

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.327
Source Normalized Impact per Paper (SNIP) 2018: 0.391

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 227, Issue 9-11

Issues

Kinetic Prefactors of Reactions on Solid Surfaces

Charles T. Campbell / Líney Árnadóttir
  • School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331-2702, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jason R. V. Sellers
Published Online: 2013-08-05 | DOI: https://doi.org/10.1524/zpch.2013.0395

Abstract

Adsorbed molecules are involved in many reactions on solid surfaces that are of great technological importance. As such, there has been tremendous effort worldwide to learn how to theoretically predict rates for reactions involving adsorbed molecules. Theoretical calculations of rate constants require knowing both their activation energy and prefactor. Recent advances in ab initio computational methods (e.g., density functional theory with periodic boundary conditions and van der Waals corrections) promise to soon provide activation energies for surface reactions with sufficient accuracy to have real predictive ability. However, to predict reaction rates, we also need accurate predictions of prefactors. We recently discovered that the standard entropies of adsorbed molecules (Sad0) linearly track the entropy of the gas-phase molecule at the same temperature (T), such that Sad0(T) = 0.70 Sgas0(T) − 3.3 R (R = the gas constant), with a standard deviation of only 2 R over a range of 50 R. This correlation, which applies only to conditions where their surface residence times are shorter than ∼ 1000 s, provides a powerful new method for estimating the partition functions for adsorbates and the kinetic prefactors for their reactions. For desorption, we show that the prefactors obtained with DFT using transition state theory (TST) and the harmonic oscillator approximation to get the partition function predicts prefactors for desorption that are of order 103 times larger than experimental values while our approach gives much better estimates. We also explore the applications of this approach to estimate prefactors within TST for the main classes of adsorbate reactions: desorption, diffusion, dissociation and association, and discuss its limitations. We discuss general issues associated with applying TST to rate laws and multi-step mechanisms in surface chemistry, and argue that rates of adsorbate reactions which are often taken to be proportional to coverage (θ) might better be taken as proportional to θ/(1 − θ) (unless the adsorbate forms islands), to account for the configurational entropy or excluded volume effects on the adsorbate's chemical potential.

Keywords: Surface Reactions; Adsorbate; Kinetics; Kinetic Prefactors; Transition State Theory

About the article

Accepted:

Received: 2013-01-31

Published Online: 2013-08-05

Published in Print: 2013-11-01


Citation Information: Zeitschrift für Physikalische Chemie, Volume 227, Issue 9-11, Pages 1435–1454, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1524/zpch.2013.0395.

Export Citation

© 2013 by Walter de Gruyter Berlin Boston. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Romain Réocreux, Carine Michel, Paul Fleurat-Lessard, Philippe Sautet, and Stephan N. Steinmann
The Journal of Physical Chemistry C, 2019
[2]
Hui Bai, Mengmeng Ma, Bing Bai, Jianping Zuo, Haojie Cao, Lin Zhang, Qian-Fan Zhang, Vladimir A. Vinokurov, and Wei Huang
Journal of Catalysis, 2019, Volume 380, Page 68
[3]
Bing Bai, Hui Bai, Jianping Zuo, Qian-Fan Zhang, Haojie Cao, Mengmeng Ma, Xiaodong Wang, Zheng Wang, and Wei Huang
Industrial & Engineering Chemistry Research, 2019
[4]
Francesco Presel, Alfonso Gijón, Eduardo R. Hernández, Paolo Lacovig, Silvano Lizzit, Dario Alfè, and Alessandro Baraldi
ACS Nano, 2019
[5]
T. Bohamud, M. Reutzel, M. Dürr, and U. Höfer
The Journal of Chemical Physics, 2019, Volume 150, Number 22, Page 224703
[6]
Vishal Agarwal and Horia Metiu
The Journal of Chemical Physics, 2019, Volume 150, Number 18, Page 184702
[8]
Septia Eka Marsha Putra, Fahdzi Muttaqien, Yuji Hamamoto, Kouji Inagaki, Ikutaro Hamada, and Yoshitada Morikawa
The Journal of Chemical Physics, 2019, Volume 150, Number 15, Page 154707
[10]
Hui Bai, Mengmeng Ma, Bing Bai, Haojie Cao, Lin Zhang, Zhihua Gao, Vladimir A. Vinokurov, and Wei Huang
Physical Chemistry Chemical Physics, 2019
[11]
Robert H. Wells, Xiang-Kui Gu, Wei-Xue Li, and Rex T. Skodje
The Journal of Physical Chemistry C, 2018
[12]
Robert A. Hoyt, Matthew M. Montemore, E. Charles H. Sykes, and Efthimios Kaxiras
The Journal of Physical Chemistry C, 2018
[13]
Bohua Ren, Jingde Li, Guobin Wen, Luis Ricardez−Sandoval, and Eric Croiset
The Journal of Physical Chemistry C, 2018
[14]
Jeffrey J. Sims, Cherif Aghiles Ould Hamou, Romain Réocreux, Carine Michel, and Javier B. Giorgi
The Journal of Physical Chemistry C, 2018
[15]
Brian S. Haynes
Proceedings of the Combustion Institute, 2018
[16]
[17]
Stijn Huygh, Annemie Bogaerts, Kristof M. Bal, and Erik C. Neyts
The Journal of Physical Chemistry C, 2018
[18]
Wei Chen, Ekin Dogus Cubuk, Matthew M. Montemore, Christian Reece, Robert J. Madix, Cynthia M. Friend, and Efthimios Kaxiras
The Journal of Physical Chemistry C, 2018
[19]
Jiubing Zhao, Shenjun Zha, Rentao Mu, Zhi-Jian Zhao, and Jinlong Gong
The Journal of Physical Chemistry C, 2018
[20]
Anshumaan Bajpai, Prateek Mehta, Kurt Frey, Andrew M. Lehmer, and William F. Schneider
ACS Catalysis, 2018, Page 1945
[21]
Aram Kostanyan, Rasmus Westerström, Yang Zhang, David Kunhardt, Roland Stania, Bernd Büchner, Alexey A. Popov, and Thomas Greber
Physical Review Letters, 2017, Volume 119, Number 23
[23]
Lin Zhang, Bing Bai, Hui Bai, Wei Huang, Zhi-Hua Gao, Zhi-Jun Zuo, and Yong-Kang Lv
Phys. Chem. Chem. Phys., 2017, Volume 19, Number 29, Page 19300
[24]
Zainab H. A. Alsunaidi, Thomas R. Cundari, and Angela K. Wilson
ACS Omega, 2017, Volume 2, Number 7, Page 3214
[25]
Cherif A. Ould Hamou, Romain Réocreux, Philippe Sautet, Carine Michel, and Javier B. Giorgi
The Journal of Physical Chemistry C, 2017, Volume 121, Number 18, Page 9889
[26]
Shyam Kattel, Pedro J. Ramírez, Jingguang G. Chen, José A. Rodriguez, and Ping Liu
Science, 2017, Volume 355, Number 6331, Page 1296
[27]
Sergey N. Filimonov, Wei Liu, and Alexandre Tkatchenko
The Journal of Physical Chemistry Letters, 2017, Volume 8, Number 6, Page 1235
[28]
Jonglo Park, Xu Xie, Dongyao Li, and David G. Cahill
Nanoscale and Microscale Thermophysical Engineering, 2017, Volume 21, Number 2, Page 70
[29]
Michelle L. Personick, Robert J. Madix, and Cynthia M. Friend
ACS Catalysis, 2017, Volume 7, Number 2, Page 965
[30]
Zhi-Jian Zhao, Zhenglong Li, Yanran Cui, Houyu Zhu, William F. Schneider, W. Nicholas Delgass, Fabio Ribeiro, and Jeffrey Greeley
Journal of Catalysis, 2017, Volume 345, Page 157
[32]
Ming Li and Edmund G. Seebauer
Applied Surface Science, 2017, Volume 397, Page 220
[33]
Josua Pecher and Ralf Tonner
ChemPhysChem, 2017, Volume 18, Number 1, Page 34
[34]
Holly Hedgeland, Marco Sacchi, Pratap Singh, Andrew J. McIntosh, Andrew P. Jardine, Gil Alexandrowicz, David J. Ward, Stephen J. Jenkins, William Allison, and John Ellis
The Journal of Physical Chemistry Letters, 2016, Volume 7, Number 23, Page 4819
[35]
Romain Réocreux, Cherif A. Ould Hamou, Carine Michel, Javier B. Giorgi, and Philippe Sautet
ACS Catalysis, 2016, Volume 6, Number 12, Page 8166
[36]
Aditya Savara, Ilenia Rossetti, Carine E. Chan-Thaw, Laura Prati, and Alberto Villa
ChemCatChem, 2016, Volume 8, Number 15, Page 2482
[37]
Reinhard J. Maurer, Victor G. Ruiz, Javier Camarillo-Cisneros, Wei Liu, Nicola Ferri, Karsten Reuter, and Alexandre Tkatchenko
Progress in Surface Science, 2016, Volume 91, Number 2, Page 72
[38]
Lynza H. Sprowl, Charles T. Campbell, and Líney Árnadóttir
The Journal of Physical Chemistry C, 2016, Volume 120, Number 18, Page 9719
[39]
Charles T. Campbell, Lynza H. Sprowl, and Líney Árnadóttir
The Journal of Physical Chemistry C, 2016, Volume 120, Number 19, Page 10283
[40]
Davide Curcio, Luca Omiciuolo, Monica Pozzo, Paolo Lacovig, Silvano Lizzit, Naila Jabeen, Luca Petaccia, Dario Alfè, and Alessandro Baraldi
Journal of the American Chemical Society, 2016, Volume 138, Number 10, Page 3395
[42]
Marcel Reutzel, Marcus Lipponer, Michael Dürr, and Ulrich Höfer
The Journal of Physical Chemistry Letters, 2015, Volume 6, Number 19, Page 3971
[43]
H. Öberg, J. Gladh, K. Marks, H. Ogasawara, A. Nilsson, L. G. M. Pettersson, and H. Öström
The Journal of Chemical Physics, 2015, Volume 143, Number 7, Page 074701
[44]
Christopher A. Wolcott, Andrew J. Medford, Felix Studt, and Charles T. Campbell
Journal of Catalysis, 2015, Volume 330, Page 197
[45]
Zhi-Jian Zhao, Cheng-chau Chiu, and Jinlong Gong
Chem. Sci., 2015, Volume 6, Number 8, Page 4403
[46]
Marco Smerieri, Edvige Celasco, Giovanni Carraro, Angelique Lusuan, Jagriti Pal, Gianangelo Bracco, Mario Rocca, Letizia Savio, and Luca Vattuone
ChemCatChem, 2015, Volume 7, Number 15, Page 2328
[47]
Wen-Yueh Yu, Liang Zhang, Gregory M. Mullen, Graeme Henkelman, and C. Buddie Mullins
The Journal of Physical Chemistry C, 2015, Volume 119, Number 21, Page 11754
[48]
GiovanniMaria Piccini, Maristella Alessio, Joachim Sauer, Yuchun Zhi, Yuanshuai Liu, Robin Kolvenbach, Andreas Jentys, and Johannes A. Lercher
The Journal of Physical Chemistry C, 2015, Volume 119, Number 11, Page 6128
[49]
Christopher A. Wolcott, Isabel X. Green, Trent L. Silbaugh, Ye Xu, and Charles T. Campbell
The Journal of Physical Chemistry C, 2014, Volume 118, Number 50, Page 29310
[50]
J. Gladh, H. Öberg, L.G.M. Pettersson, and H. Öström
Surface Science, 2015, Volume 633, Page 77
[51]
Zhiyao Duan and Graeme Henkelman
ACS Catalysis, 2014, Volume 4, Number 10, Page 3435
[52]
Abbin Antony, Aravind Asthagiri, and Jason F. Weaver
The Journal of Chemical Physics, 2013, Volume 139, Number 10, Page 104702

Comments (0)

Please log in or register to comment.
Log in