Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 1, 2017

From acute to chronic back pain: Using linear mixed models to explore changes in pain intensity, disability, and depression

  • Rebecca Bendayan EMAIL logo , Carmen Ramírez-Maestre , Emilio Ferrer , Alicia López and Rosa Esteve



This longitudinal study investigated the pattern of change in pain intensity, disability, and depression in 232 chronic pain patients who were followed up for 2 years since pain onset. Most studies that have investigated changes in these variables over time have used participants who had already been in pain for more than 3 months. Few studies have followed up individuals from the acute phase onward and such studies used traditional statistical methods that cannot identify transition points over time or measure inter-individual variability.


We followed up individuals with chronic pain from pain onset up to 18 months and we examined their pain intensity, disability and depression trajectories using a modelling approach that allows to account for between and within-individual variability. We compared three patterns of change based on theoretical criterions: a simple linear growth model; a spline model with a 3-month transition point; and a spline model with a 6-month transition point. Time with pain was selected as time metric to characterise the change in these variables in the transition from acute to chronic pain. Sex and age differences were also examined.


The results showed that the pain intensity trajectory was best represented by the spline model with a 3-month transition point, whereas disability and depression were best explained by linear growth models. There were sex differences at intercept level in all the models. There were age differences at baseline for pain intensity. No sex or age differences were found for the slope.


Pain intensity decreased in the first 3 months but underwent no further change. Disability and depression slightly but constantly decreased over time. Although women and older individuals are more likely to report higher pain intensity or pain-related disability in the first three months with pain, no differences by sex or age appear to be associated with the changes in pain intensity, depression and disability through the process of chronification.


Our findings suggest that pain chronification could be considered a continuous process and contribute to the ongoing discussion on the utility of standard classifications of pain as acute or chronic from a clinical point of view. Clinical and intervention decisions based in these standard classifications should consider the differences in the trajectories of pain related variables over time. In addition, this article illustrates a statistical procedure that can be of utility to pain researchers.

DOI of refers to article:

Departmento de Psicobiologia y Metodologia de las CC. Del C., Faculted de Psicologia, Campus de Teatinos s/n, Malaga 29071, Spain

  1. Ethical issues: This research project was approved and registered by the Carlos Haya Hospital Ethics Committee. Informed consent was obtained prior to data collection.

  2. Conflict of interest: None declared.


This study was supported by grants from the Spanish Ministry of Science and Innovation (PSI2008-01803/PSIC and PSI2012-32662); and the Regional Government of Andalusia (HUM-566; P07-SEJ- 3067).


[1] Hoy D, Bain C, Williams G, March L, Brooks P, Blyth F, Woolf A, Vos T, Buchbinder R. A systematic review of the global prevalence of low back pain. Arthritis Rheum 2012;64:2028–37, in Google Scholar

[2] Rosenbloom BN, Khan S, McCartney C, Katz J. Systematic review of persistent pain and psychological outcomes following traumatic musculoskeletal injury. J Pain Res 2013;6:39, in Google Scholar

[3] Jensen MP, Hoffman AJ, Cardenas DD. Chronic pain in individuals with spinal cord injury: a survey and longitudinal study. Spinal Cord 2005;43:704–12, in Google Scholar

[4] Lemeunier N, Leboeuf YdeC, Kjaer P, Gagey O. Stability of low back pain reporting over 8 years in a general population aged 40/41 years at base-line: data from three consecutive cross-sectional surveys. BMC Musculoskel Disord 2013;14:270, in Google Scholar

[5] Hestbaek L, Leboeuf YdeC, Engberg M, Lauritzen T, Bruun NH, Manniche C. The course of low back pain in a general population. Results from a 5-year prospective study. J Manipul Physiol Therapeut 2003;26:213–9, in Google Scholar

[6] Elliott AM, Smith BH, Hannaford PC, Smith WC, Chambers WA. The course of chronic pain in the community: results of a 4-year follow-up study. Pain 2002;99:299–307, in Google Scholar

[7] Tamcan O, Mannion AF, Eisenring C, Horisberger B, Elfering A, Müller U. The course of chronic and recurrent low back pain in the general population. Pain 2010;150:451–7, in Google Scholar PubMed

[8] McGorry RW, BSPT BSW, Snook SH, Hsiang SM. The relation between pain intensity, disability, and the episodic nature of chronic and recurrent low back pain. Spine 2000;25:834–41, in Google Scholar PubMed

[9] Mitchell J, Adkins R. Five-year changes in self-rated health and associated factors for people aging with versus without spinal cord injury. Top Spinal Cord Inj Rehabil 2010;15:21–33, in Google Scholar

[10] Saunders LL, Krause JS, Focht KL. A longitudinal study of depression in survivors of spinal cord injury. Spinal Cord 2012;50:72–7, in Google Scholar PubMed

[11] Casey CY, Greenberg MA, Nicassio PM, Harpin RE, Hubbard D. Transition from acute to chronic pain and disability: a model including cognitive, affective, and trauma factors. Pain 2008;134:69–79, in Google Scholar

[12] Philips HC, Grant L. The evolution of chronic back pain problems: a longitudinal study. Behav Res Ther 1991;29:435–41, in Google Scholar

[13] Dunn KM, Campbell P, Jordan KP. Long-term trajectories of back pain: cohort study with 7-year follow-up. BMJ Open 2013;3:e003838, in Google Scholar

[14] Dunn KM, Jordan K, Croft PR. Characterizing the course of low back pain: a latent class analysis. Am J Epidemiol 2006;163:754–61, in Google Scholar

[15] Kongsted A, Kent P, Hestbaek L, Vach W. Patients with low back pain had distinct clinical course patterns that were typically neither complete recovery nor constant pain. A latent class analysis of longitudinal data. Spine J 2015;15:885–94, in Google Scholar

[16] Jensen MP, Turner P, Romano JM, Fischer LD. Comparative reliability and validity of chronic pain intensity measures. Pain 1999;83:157–62, in Google Scholar

[17] Zigmond AS, Snaith RP. The Hospital Anxiety and Depression Scale. Acta Psychiatr Scand 1983;67:361–70, in Google Scholar

[18] Quintana JM, Padierna A, Esteban C, Arostegui I, Bilbao A, Ruiz I. Evaluation of the psychometric characteristics of the Spanish Version of the Hospital Anxiety and depression Scale. Acta Psychiatr Scand 2003;107:216–21, in Google Scholar PubMed

[19] Roland M, Morris R. A study of the natural history of back pain. Part I. Spine 1983;8:141–4, in Google Scholar PubMed

[20] Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982:963–74, in Google Scholar

[21] Little R, Milliken G, Stroup W, Wolfinger RSAS. System for mixed models. SAS Institute Inc.; 1996.Search in Google Scholar

[22] Singer JD, Willett JB. Applied longitudinal data analysis: modeling change and event occurrence. Oxford University Press; 2003, in Google Scholar

[23] Kail RV, Ferrer E. Processing speed in childhood and adolescence: longitudinal models for examining developmental change. Child Dev 2007;78:1760–70, in Google Scholar

[24] McArdle JJ, Ferrer-Caja E, Hamagami F, Woodcock RW. Comparative longitudinal structural analyses of the growth and decline of multiple intellectual abilities over the life span. Dev Psychol 2002;38:115, in Google Scholar

[25] Axén I, Bodin L, Bergström G, Halasz L, Lange F, Lövgren PW, Rosenbaum A, Leboeuf-Yde C, Jensen I. The use of weekly text messaging over 6 months was a feasible method for monitoring the clinical course of low back pain in patients seeking chiropractic care. J Clin Epidemiol 2012;65:454–61, in Google Scholar

[26] Grimm K, Ram N, Hamagami F. Nonlinear growth curves in developmental research. Child Dev 2011;82:1357–71, in Google Scholar

[27] Arnau J, Bendayan R, Blanca MJ, Bono R. Should we rely on the Kenward–Roger approximation when using linear mixed models if the groups have different distributions? Br J Math Stat Psychol 2014;67:408–29, in Google Scholar

[28] Arnau J, Bendayan R, Blanca MJ, Bono R. The effect of skewness and kurtosis on the Kenward–Roger approximation when group distributions differ. Psicothema 2014;26:279–85.Search in Google Scholar

[29] Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 1997:983–97, in Google Scholar

[30] Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain 2006;10:287–333, in Google Scholar

[31] Haley WE, Turner JA, Romano JM. Depression in chronic pain patients: relation to pain, activity, and sex differences. Pain 1985;23:337–43, in Google Scholar

[32] Thomas E, Mottram S, Peat G, Wilkie R, Croft P. The effect of age on the onset of pain interference in a general population of older adults: prospective findings from the North Staffordshire Osteoarthritis Project (NorStOP). Pain 2007;129:21–7, in Google Scholar PubMed

[33] Turk DC, Okifuji A, Scharff L. Chronic pain and depression: role of perceived impact and perceived control in different age cohorts. Pain 1995;61:93–101, in Google Scholar

[34] Dong Y, Peng CYJ. Principled missing data methods for researchers. Springer-Plus 2013;2:222, in Google Scholar

[35] Rubin LH, Witkiewitz K, Andre JS, Reilly S. Methods for handling missing data in the behavioral neurosciences: don’t throw the baby rat out with the bath water. J Undergrad Neurosci Educ 2007;5:A71.Search in Google Scholar

[36] Carpenter J, Kenward M. Brief comments on computational issues with multiple imputation; 2008. Retrieved from in Google Scholar

[37] Bendayan R, Esteve R, Blanca MJ. New empirical evidence of the validity of the Chronic Pain Acceptance Questionnaire: the differential influence of activity engagement and pain willingness on adjustment to chronic pain. Br J Health Psychol 2012;17:314–26, in Google Scholar

[38] McCracken LM, Eccleston C. Coping or acceptance: what to do about chronic pain? Pain 2003;105:197–204, in Google Scholar

[39] Ramírez-Maestre C, Esteve R, López AE. The paths to capacity: resilience and spinal chronic pain. Spine 2012;37:251–8, in Google Scholar PubMed

[40] Viane I, Crombez G, Eccleston C, Devulder J, De Corte W. Acceptance of the unpleasant reality of chronic pain: effects upon attention to pain and engagement with daily activities. Pain 2004;112:282–8, in Google Scholar PubMed

[41] Ramírez-Maestre C, Esteve R, López-Martínez A. Fear-avoidance, pain acceptance and adjustment to chronic pain: a cross-sectional study on a sample of 686 patients with chronic spinal pain. Ann Behav Med 2014;48:402–10, in Google Scholar PubMed

[42] Ramírez-Maestre C, Esteve R. The role of sex/gender in the experience of pain: resilience, fear, and acceptance as central variables in the adjustment of men and women with chronic pain. J Pain 2014;15:608–18, in Google Scholar PubMed

[43] Ramírez Maestre C, Anarte MT, Esteve R, López Martínez AE. Diferencias en la percepción del dolor relacionadas con las variables sexo y edad. Rev Soc Esp Dolor 2001:562–8.Search in Google Scholar

[44] Ramírez-Maestre C, Martínez AEL, Zarazaga RE. Personality characteristics as differential variables of the pain experience. J Behav Med 2004;27:147–65, in Google Scholar

[45] Thomas E. Pain in older people. In: Croft P, Blyth FM, van Der Windt D, editors. Chronic pain epidemiology: from aetiology to public health. Oxford: OUP; 2010. p. 185–99.10.1093/acprof:oso/9780199235766.003.0016Search in Google Scholar

[46] Von Korff M, Dunn KM. Chronic pain reconsidered. Pain 2008;138:267–76, in Google Scholar PubMed PubMed Central

Appendix A

Let Y be a variable measured on an individual (i =1 to N) over time (t = 1 to T), where Y is pain intensity, depression, and disability in each model, respectively; time is time with pain.

The first model is a linear growth model, which can be written as


where Yit is the observed score on individual i at measurement t, yi0 is the latent initial level score of an individual i, yis is a latent score of individual i, representing the slope or change in the individual over time, timeit is the observed time with pain of individual i at measurement t, and eit is the latent error score of individual i at measurement t. This model includes sources of individual differences in the level and slope, as

yi0=μ0+3i0 andyis=μs+eis

where the level and slope scores have fixed group means (μ0 and μs and residuals (ei0 and eis), and these residuals have variance components ( σ02,σs2 and σ0s; u ~ N(0, G)). Similarly, the error term associated with the within-person residual eit also has a zero mean and a variance term σ02, (ei ~ N(0, R)).

The next model allows a change of direction in the trajectory at a specific point in time (i.e., a linear spline model). Two linear spline models with two pre-determined transition points were investigated; one with a transition point at 3 months with pain (according to the standard definition of chronic pain), and the second at 6 months with pain (as suggested by Philips and Grant [12]). These models can be written as


where time1 and time2 represent the time with pain before and after the transition point, yis1 and yis2 are the regression coefficients associated with the linear changes before and after that transition point, and yi0 represents the score at that point. This model has been found to be useful to evaluate hypotheses on differential rates of change across various periods of time. For further information on these models see Kail and Ferrer [23] and McArdle et al. [24].

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at

Received: 2016-09-10
Revised: 2017-02-03
Accepted: 2017-02-21
Published Online: 2017-07-01
Published in Print: 2017-07-01

© 2017 Scandinavian Association for the Study of Pain

Downloaded on 10.12.2023 from
Scroll to top button