Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Studies for the synthesis of marine natural products

  • David R. Williams , Martin J. Walsh , Christopher D. Claeboe and Nicolas Zorn

Abstract

The process of allylic transposition in SE' reactions is a significant construct for synthesis. The flexibility of a variety of allylation strategies provides for the rational design of pathways to a diverse array of complex targets. Our recent studies of SE' reactions will examine issues of stereoselectivity and efficiency in the context of applications toward the synthesis of marine natural products such as the xenicane diterpenes, which feature the strained E-cyclononene ring system, and peloruside A, a 16-membered macrocyclic lactone.


Conference

International Conference on Organic Synthesis (ICOS 17), International Conference on Organic Synthesis, ICOS, Organic Synthesis, 17th, Daejeon, Korea, 2008-06-22–2008-06-27


References

1. (a) doi:10.1021/ja005644l, amphidinolide K: D. R. Williams, K. G. Meyer. J. Am. Chem. Soc. 123, 765 (2001);Search in Google Scholar

1. (b) doi:10.1002/anie.200351817, leucascandrolide A: D. R. Williams, S. V. Plummer, S. Patnaik. Angew. Chem., Int. Ed. 42, 3934 (2003);Search in Google Scholar

1. (c) doi:10.1073/pnas.0402477101, phorboxazole A: D. R. Williams, A. A. Kiryanov, U. Emde, M. P. Clark, M. A. Berliner, J. T. Reeves. Proc. Natl. Acad. Sci. USA 101, 12058 (2004);Search in Google Scholar

1. (d) doi:10.1016/S0040-4039(02)00907-3, laulimalide; D. R. Williams, L. Mi, R. J. Mullins, R. E. Stites. Tetrahedron Lett. 43, 4841 (2002);Search in Google Scholar

1. (e) deoxyneodolabelline: D. R. Williams, R. W. Heidebrecht Jr. J. Am. Chem. Soc. 125, 1843 (2003);10.1021/ja0279803Search in Google Scholar PubMed

1. (f) S. R. Chemler, W. R. Roush. Recent Applications of the Allylation Reaction to the Synthesis of Natural Products. Modern Carbonyl Chemistry, J. Otera (Ed.), pp. 403-490, Wiley-VCH (2000).10.1002/9783527613267.ch11Search in Google Scholar

2. G. Guella, F. Pietra. Chem. Commun. 1539 (1993).10.1039/c39930001539Search in Google Scholar

3. doi:10.1246/cl.1982.1927, Earlier studies had described 1 as a semi-synthetic derivative obtained from the diterpenoid, fukurinolal: M. Ochi, N. Masui, H. Kotsuki, I. Miura, T. Tokoroyama. Chem. Lett. 1927 (1982).Search in Google Scholar

4. doi:10.1021/jo01326a040, J. Finer, J. Clardy, W. Fenical, L. Minale, R. Riccio, J. Battaile, M. Kirkup, R. E. Moore. J. Org. Chem. 44, 2044 (1979).Search in Google Scholar

5. doi:10.1021/ja00459a040, D. J. Vanderah, P. A. Steudler, L. S. Clereszko, F. J. Schmitz, J. D. Ekstrand, D. van der Helm. J. Am. Chem. Soc. 99, 5780 (1977).Search in Google Scholar

6. doi:10.1016/S0040-4039(00)99187-1, I. Ohtani, T. Kusumi, M. O. Ishitsuka, H. Kakisawa. Tetrahedron Lett. 30, 3147 (1989).Search in Google Scholar

7. doi:10.1002/1521-3773(20011217)40:24<4544::AID-ANIE4544>3.0.CO;2-N, For a review: S. R. Chemler, D. Trauner, S. J. Danishefsky. Angew. Chem., Int. Ed. 40, 4544 (2001).Search in Google Scholar

8. doi:10.1021/ja01057a040, E. J. Corey, R. B. Mitra, H. Uda. J. Am. Chem. Soc. 86, 485 (1964).Search in Google Scholar

9. doi:10.1021/ja8003705, O. V. Larionov, E. J. Corey. J. Am. Chem. Soc. 130, 2954 (2008).Search in Google Scholar

10. doi:10.1002/anie.200600641, A. Gradillas, J. Perez-Castells. Angew. Chem., Int. Ed. 45, 6086 (2006).Search in Google Scholar

11. doi:10.1021/jo070862j, L. A. Paquette, S. Dong, G. D. Parker. J. Org. Chem. 72, 7135 (2007).Search in Google Scholar

12. J. Mann, A. C. Weymouth-Wilson. Org. Synth. 75, 139 (1997).Search in Google Scholar

13. doi:10.1055/s-1992-26080, P. Cintas. Synthesis 3, 248 (1992).Search in Google Scholar

14. (a) H. Yamamoto. "Propargyl and allenyl organometallics", in Comp. Org. Synth. B. M. Trost, I. Fleming (Eds.), pp. 81-98, Pergamon Press (1991);10.1016/B978-0-08-052349-1.00025-1Search in Google Scholar

14. (b) H. Hopf, I. Bohm, J. Kleinschroth. Org. Syn. Coll. 7, 485 (1990).Search in Google Scholar

15. doi:10.1021/jo00219a058, B. L. Chenard, L. F. Davidson, T. V. Rajanbabu. J. Org. Chem. 50, 3667 (1985).Search in Google Scholar

16. D. R. Williams. Synthesis Studies of Dolabellane and Transannular Processes Leading to Related Diterpenes in Strategies and Tactics in Organic Synthesis, M. Harmata (Ed.), Vol. 7, pp. 243-267, Elsevier (2008).10.1016/S1874-6004(08)80011-1Search in Google Scholar

17. doi:10.1002/hlca.19940770503, G. Guella, G. Chiasera, I. N'Diaye, F. Pietra. Helv. Chim. Acta 77, 1203 (1994).Search in Google Scholar

18. D. R. Williams, P. P. Nag, N. Zorn. Curr. Opin. Drug Discov. Dev. 11, 251 (2008).Search in Google Scholar

19. doi:10.1021/jo991296y, L. M. West, P. T. Northcote, C. N. Battershill. J. Org. Chem. 65, 445 (2000).Search in Google Scholar

20. (a) doi:10.1002/anie.200351145, X. Liao, Y. Wu, J. K. DeBrabander. Angew Chem., Int. Ed. 42, 1648 (2003);Search in Google Scholar

20. (b) doi:10.1021/ol050070g, M. Jin, R. E. Taylor. Org. Lett. 7, 1303 (2005);Search in Google Scholar

20. (c) doi:10.1021/ol703091b, A. K. Ghosh, X. Xu, J.-H. Kim, C.-X. Xu. Org. Lett. 10, 1001 (2008).Search in Google Scholar

21. doi:10.1021/ja0580237, J. Jimenez-Barbero, A. Canales, P. T. Northcote, R. M. Buey, J. M. Andreu, J. F. Diaz. J. Am. Chem. Soc. 128, 8757 (2006).Search in Google Scholar

22. (a) doi:10.1021/ja00196a082, E. J. Corey, C.-M. Yu, S. S. Kim. J. Am. Chem. Soc. 111, 5495 (1989);Search in Google Scholar

22. (b) doi:10.1016/S0040-4039(98)01557-3, D. R. Williams, D. A. Brooks, K. G. Meyer, M. P. Clark. Tetrahedron Lett. 39, 7251 (1998);Search in Google Scholar

22. (c) doi:10.1139/v03-168, D. R. Williams, K. G. Meyer, K. Shamim, S. Patnaik. Can. J. Chem. 82, 120 (2004).Search in Google Scholar

23. doi:10.1021/jo00067a002, G. A. Crispino, K.-S. Jeong, H. C. Kolb, Z.-M. Wang, D. Xu, K. B. Sharpless. J. Org. Chem. 58, 3785 (1993).Search in Google Scholar

24. (a) doi:10.1021/jo00160a046, K. Tamao, N. Ishida, M. Kumada. J. Org. Chem. 48, 2122 (1983);Search in Google Scholar

24. (b) doi:10.1021/ol0359259, D. L. Aubele, C. A. Lee, P. E. Floreancig. Org. Lett. 5, 4521 (2003);Search in Google Scholar

24. (c) doi:10.1016/j.tet.2005.12.005, C. Perez-Balado, I. E. Marko. Tetrahedron 62, 2331 (2006).Search in Google Scholar

25. (a) doi:10.1002/chem.200600251, C. J. O'Brien, E. A. B. Kantchev, C. Valente, N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson, M. G. Organ. Chem.Eur. J. 12, 4743 (2006);Search in Google Scholar

25. (b) doi:10.1002/chem.200600206, M. G. Organ, S. Avola, I. Dubovyk, N. Hadei, E. A. B. Kantchev, C. J. O'Brien, C. Valente. Chem.Eur. J. 12, 4749 (2006).Search in Google Scholar

26. (a) doi:10.1021/jo951313t, K. S. Ravikumar, S. Chandrasekaran. J. Org. Chem. 61, 826 (1996);Search in Google Scholar

26. (b) doi:10.1021/jo9902906, K. S. Ravikumar, S. Sinha, S. Chandrasekaran. J. Org. Chem. 64, 5841 (1999).Search in Google Scholar

27. doi:10.1016/S0040-4039(00)85909-2, W. C. Still, C. Gennari. Tetrahedron Lett. 24, 4405 (1983).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2009-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-08-07-23/html
Scroll to top button