Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Self-assembled ordered mesoporous metals

Scott C. Warren and Ulrich Wiesner


Control over the structure of metals at the mesoscale (2-50 nm) is crucial for emerging applications such as energy conversion, sensing, and information processing. The self-assembly of nanoparticles with block copolymers provides a natural entry point to materials of this length scale. The field's historical development, relevant physical models, and recent results are presented.


1. M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, C. E. Hanson (Eds.). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contributions of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge (2007).Search in Google Scholar

2. B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, L. A. Meyers (Eds.). Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge (2007).Search in Google Scholar

3. doi:10.1351/pac197646010071, R. L. Burwell Jr. Pure Appl. Chem. 46, 71 (1976).Search in Google Scholar

4. doi:10.1126/science.1082332, D. R. Rolison. Science 299, 1698 (2003).Search in Google Scholar

5. doi:10.1038/35104644, J. M. Tarascon, M. Armand. Nature 414, 359 (2001).Search in Google Scholar

6. doi:10.1038/353737a0, B. O'Regan, M. Gratzel. Nature 353, 737 (1991).Search in Google Scholar

7. doi:10.1038/35104620, B. C. H. Steele, A. Heinzel. Nature 414, 345 (2001).Search in Google Scholar

8. doi:10.1021/cm980243e, K. Moller, T. Bein. Chem. Mater. 10, 2950 (1998).Search in Google Scholar

9. doi:10.1002/adma.200306557, A. M. Seayad, D. M. Antonelli. Adv. Mater. 16, 765 (2004).Search in Google Scholar

10. doi:10.1016/0021-9673(96)00205-1, M. Grun, A. A. Kurganov, S. Schacht, F. Schuth, K. K. Unger. J. Chromatogr., A 740, 1 (1996).Search in Google Scholar

11. doi:10.1021/cm021319g, C. Boissiere, M. A. U. Martines, P. J. Kooyman, T. R. de Kruijff, A. Larbot, E. Prouzet. Chem. Mater. 15, 460 (2003).Search in Google Scholar

12. doi:10.1021/cm0110730, B. J. Scott, G. Wirnsberger, G. D. Stucky. Chem. Mater. 13, 3140 (2001).Search in Google Scholar

13. doi:10.1021/cm0110674, P. F. W. Simon, R. Ulrich, H. W. Spiess, U. Wiesner. Chem. Mater. 13, 3464 (2001).Search in Google Scholar

14. doi:10.1021/cr068020s, Y. Wan, D. Y. Zhao. Chem. Rev. 107, 2821 (2007).Search in Google Scholar

15. doi:10.1002/adma.200601763, M. G. Kanatzidis. Adv. Mater. 19, 1165 (2007).Search in Google Scholar

16. doi:10.1021/ar6000389, S. W. Boettcher, J. Fan, C.-K. Tsung, Q. Shi, G. D. Stucky. Acc. Chem. Res. 40, 784 (2007).Search in Google Scholar

17. doi:10.1002/chem.200500801, G. J. A. A. Soler-Illia, P. Innocenzi. Chem.Eur. J. 12, 4478 (2006).Search in Google Scholar

18. doi:10.1016/S1359-0294(03)00002-5, G. J. A. A. Soler-Illia, E. Crepaldi, D. Grosso, C. Sanchez. Curr. Opin. Coll. Int. Sci. 8, 109 (2003).Search in Google Scholar

19. doi:10.1021/cr0200062, G. J. A. A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin. Chem. Rev. 102, 4093 (2002).Search in Google Scholar

20. doi:10.1016/S1359-0286(96)80104-5, C. J. Brinker. Curr. Opin. Solid State Mater. Sci. 1, 798 (1996).Search in Google Scholar

21. doi:10.1002/9783527610570.ch14, M. Kamperman, U. Wiesner. In Block Copolymers in Nanoscience, M. Lazzari, G. Liu, L. Sebastien (Eds.), pp. 309-335, Wiley-VCH, Weinheim (2006).Search in Google Scholar

22. doi:10.1021/cm7024125, Y. Wan, Y. Shi, D. Zhao. Chem. Mater. 20, 932 (2008).Search in Google Scholar

23. doi:10.1111/j.1475-4754.1999.tb00983.x, M. P. Pomies, M. Menu, C. Vignaud. Archaeometry 41, 275 (1999).Search in Google Scholar

24. doi:10.1111/j.1475-4754.2008.00373.x, C. Chadefaux, C. Vignaud, M. Menu, I. Reiche. Archaeometry 50, 516 (2008).Search in Google Scholar

25. doi:10.1126/science.1112255, J. Aizenberg, J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse, P. Fratzl. Science 309, 275 (2005).Search in Google Scholar

26. doi:10.1002/1521-3773(20020503)41:9<1543::AID-ANIE1543>3.0.CO;2-B, E. G. Vrieling, T. P. M. Beelen, R. A. v. Santen, W. W. C. Gieskes. Angew. Chem., Int. Ed. 41, 1543 (2002).Search in Google Scholar

27. doi:10.1126/science.1070026, M. Sumper. Science 295, 2430 (2002).Search in Google Scholar

28. C. Goodyear. Dinglers Polytech. J. 139, 376 (1856).Search in Google Scholar

29. doi:10.1557/JMR.1993.1185, Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito. J. Mater. Res. 8, 1185 (1993).Search in Google Scholar

30. doi:10.1021/cm00036a004, R. A. Vaia, H. Ishii, E. P. Giannelis. Chem. Mater. 5, 1694 (1993).Search in Google Scholar

31. doi:10.1021/ja00175a019, V. Sankaran, C. C. Cummins, R. R. Schrock, R. E. Cohen, R. J. Sibley. J. Am. Chem. Soc. 112, 6858 (1990).Search in Google Scholar

32. doi:10.1021/cm00019a011, C. C. Cummins, R. R. Schrock, R. E. Cohen. Chem. Mater. 4, 27 (1992).Search in Google Scholar

33. doi:10.1021/cm00019a010, Y. N. C. Chan, R. R. Schrock, R. E. Cohen. Chem. Mater. 4, 24 (1992).Search in Google Scholar

34. doi:10.1051/jp2:1996106, B. Hamdoun, D. Ausserre, S. Joly, Y. Gallot, V. Cabuil, C. Clinard. J. Phys. II France 6, 493 (1996).Search in Google Scholar

35. doi:10.1038/359710a0, C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck. Nature 359, 710 (1992).Search in Google Scholar

36. doi:10.1038/368317a0, Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schueth, G. D. Stucky. Nature 368, 317 (1994).Search in Google Scholar

37. doi:10.1126/science.269.5228.1242, S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia. Science 269, 1242 (1995).Search in Google Scholar

38. doi:10.1126/science.267.5199.865, P. T. Tanev, T. J. Pinnavaia. Science 267, 865 (1995).Search in Google Scholar

39. doi:10.1126/science.278.5344.1795, M. Templin, A. Franck, A. DuChesne, H. Leist, Y. M. Zhang, R. Ulrich, V. Schadler, U. Wiesner. Science 278, 1795 (1997).Search in Google Scholar

40. doi:10.1126/science.279.5350.548, D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky. Science 279, 548 (1998).Search in Google Scholar

41. doi:10.1002/(SICI)1521-3773(19980316)37:5<613::AID-ANIE613>3.0.CO;2-G, C. G. Goltner, S. Henke, M. C. Weissenberger, M. Antonietti. Angew. Chem., Int. Ed. 37, 613 (1998).Search in Google Scholar

42. doi:10.1002/adma.19970090516, C. G. Goltner, M. Antonietti. Adv. Mater. 9, 431 (1997).Search in Google Scholar

43. doi:10.1021/ma0359786, A. Jain, U. Wiesner. Macromolecules 37, 5665 (2004).Search in Google Scholar

44. doi:10.1063/1.882522, F. S. Bates, G. H. Fredrickson. Phys. Today 52, 32 (1999).Search in Google Scholar

45. V. Abetz (Ed.). Block Copolymers I, Springer-Verlag, Berlin (2006).10.1007/b138192Search in Google Scholar

46. doi:10.1146/annurev.pc.41.100190.002521, F. S. Bates, G. H. Fredrickson. Ann. Rev. Phys. Chem. 41, 525 (1990).Search in Google Scholar

47. P.-G. de Gennes. Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca (1979).Search in Google Scholar

48. doi:10.1126/science.1060585, R. B. Thompson, V. V. Ginzburg, M. W. Matsen, A. C. Balazs. Science 292, 2469 (2001).Search in Google Scholar

49. doi:10.1021/ma000708y, J. Huh, V. V. Ginzburg, A. C. Balazs. Macromolecules 33, 8085 (2000).Search in Google Scholar

50. doi:10.1002/adma.200500167, M. R. Bockstaller, R. A. Mickiewicz, E. L. Thomas. Adv. Mater. 17, 1331 (2005).Search in Google Scholar

51. doi:10.1038/nmat1819, S. C. Warren, F. J. DiSalvo, U. Wiesner. Nat. Mater. 6, 156 (2007).Search in Google Scholar

52. doi:10.1021/ma961103y, D. E. Fogg, L. H. Radzilowski, R. Blanski, R. R. Schrock, E. L. Thomas. Macromolecules 30, 417 (1997).Search in Google Scholar

53. doi:10.1021/ja034523t, M. R. Bockstaller, Y. Lapetnikov, S. Margel, E. L. Thomas. J. Am. Chem. Soc. 125, 5275 (2003).Search in Google Scholar

54. doi:10.1021/ja050376i, J. J. Chiu, B. J. Kim, E. J. Kramer, D. J. Pine. J. Am. Chem. Soc. 127, 5036 (2005).Search in Google Scholar

55. doi:10.1021/ja064469r, S. C. Warren, M. J. Banholzer, L. S. Slaughter, E. P. Giannelis, F. J. DiSalvo, U. B. Wiesner. J. Am. Chem. Soc. 128, 12074 (2006).Search in Google Scholar

56. doi:10.1126/science.1159950, S. C. Warren, L. C. Messina, L. S. Slaughter, M. Kamperman, Q. Zhou, S. M. Gruner, F. J. DiSalvo, U. Wiesner. Science 320, 1748 (2008).Search in Google Scholar

57. doi:10.1038/nmat2111, J. Lee, M. C. Orilall, S. C. Warren, M. Kamperman, F. J. DiSalvo, U. Wiesner. Nat. Mater. 7, 222 (2008).Search in Google Scholar

58. M. Raney. U.S. Patent (1927).Search in Google Scholar

59. G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. Elliott, M., J. R. Owen, J. H. Wang. Science 278, 838 (1997).10.1126/science.278.5339.838Search in Google Scholar

60. doi:10.1002/anie.199713151, G. S. Attard, C. G. Goltner, J. M. Corker, S. Henke, R. H. Templer. Angew. Chem., Int. Ed. 36, 1315 (1997).Search in Google Scholar

61. doi:10.1039/b406265e, Y. Yamauchi, T. Yokoshima, T. Momma, T. Osaka, K. Kuroda. J. Mater. Chem. 14, 2935 (2004).Search in Google Scholar

62. doi:10.1002/ange.200801381, Y. Yamauchi, A. Sugiyama, R. Morimoto, A. Takai, K. Kuroda. Angew. Chem., Int. Ed. 120, 5451 (2008).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2009-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.12.2022 from
Scroll Up Arrow