Skip to content
Publicly Available Published by De Gruyter August 26, 2009

Fluorescence of oligonucleotides adsorbed onto the thermoresponsive poly(isopropyl acrylamide) shell of polymer nanoparticles: Application to bioassays

José M. G. Martinho , Telmo J. V. Prazeres , Leila Moura and José P. S. Farinha

Abstract

The fluorescence of a rhodamine X dye covalently linked to the 5' terminus of a 25-mers thymine oligodeoxynucleotide (dT25-ROX), adsorbed on the shell of thermoresponsive core-shell polymer particles, was used to probe the polarity, mobility, and distribution of the oligodeoxynucleotides (ODNs) in the shell. The particles have a glassy core of poly(methyl methacrylate) (PMMA) with a 67-nm radius, and a thermoresponsive shell of poly(N-isopropyl acrylamide) (PNIPAM) whose thickness changes from 42 nm at 11 ºC to 5 nm at 45 ºC. The variation in polarity of the shell with temperature was obtained both from the lifetimes and from the solvatochromic shifts of the dye and shows a sharp transition at the volume phase transition temperature (TVPT) of the PNIPAM shell. Förster resonance energy transfer (FRET) between dT25-ROX and a malachite green (MG)-labeled ODN (dT25-MG) was used to obtain the distribution of the ODNs in the thermoresponsive shell. Our results show that at 23 ºC (below TVPT) the ODNs are distributed inside the shell, sensing an environment similar to water. At this temperature, the PNIPAM shell is composed of hydrated chains with high mobility, as probed by the fluorescence anisotropy of dT25-ROX. By increasing the temperature above TVPT, the shell collapses and the chain mobility drastically slows down owing to the anchoring of the ODN to the dense shell of PNIPAM. Furthermore, FRET shows that the ODNs are absorbed on the 5-nm-thick collapsed shell but extend into the water. The polarity probed by the ROX averages the dyes distributed in the interior of the particle shell and in water, with 60 % of the dyes outside the particle shell (i.e., sensing pure water). Another indication that above the TVPT most of the ODNs are oriented with the dye toward the water phase is that the mobility of the dye covalently bound to the ODNs is identical in water and in the collapsed particle shell. The hybridization efficiency between an ODN supported in the particle shell (by adsorbing the ODN below TVPT and subsequently increasing the temperature above TVPT) and the complementary ODN in solution is identical to that of hybridization in water. This result opens good perspectives toward the use of the core-shell thermoresponsive nanoparticles as supports in DNA bioassays.


Conference

IUPAC Symposium on Photochemistry, International Symposium on Photochemistry, PHOTO, Photochemistry, XXIInd, Gothenburg, Sweden, 2008-07-28–2008-08-01


References

1. B. Valeur. Molecular Fluorescence: Principles and Applications, Wiley-VCH, New York (2001).Search in Google Scholar

2. J. Lacowitz. Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic, Dordrecht (1999).Search in Google Scholar

3. I. Z. Steinber, E. Hass, E. Katchalsi. "Long-range nonradiative transfer of electronic excitation energy", in Time-Resolved Spectroscopy in Biochemistry and Biology, S. St. Andrews (Ed.), Plenum, New York (1983).10.1007/978-1-4757-1634-4_24Search in Google Scholar

4. doi:10.1021/bi00082a020, P. S. Eis, J. R. Lakowicz. Biochemistry 32, 7981 (1993).Search in Google Scholar

5. doi:10.1021/bi00097a009, B. P. Maliwal, J. R. Lakowicz, G. Kupryszewski, P. Rekowski. Biochemistry 32, 12337 (1993).Search in Google Scholar

6. doi:10.1021/bi00001a036, K. M. Parkhurst, L. J. Parkhurst. Biochemistry 34, 293 (1995).Search in Google Scholar

7. doi:10.1021/jp8016437, J. P. S. Farinha, J. M. G. Martinho. J. Phys. Chem. C 112, 10591 (2008).Search in Google Scholar

8. doi:10.1021/ja00231a030, J. M. G. Martinho, K. Sienicki, D. Blue, M. A. Winnik. J. Am. Chem. Soc. 110, 7773 (1988).Search in Google Scholar

9. doi:10.1021/ma00162a029, J. M. G. Martinho, M. A. Winnik. Macromolecules 19, 2281 (1986).Search in Google Scholar

10. doi:10.1002/anie.200501321, S. Nayak, L. A. Lyon. Angew. Chem., Int. Ed. 44, 7686 (2005).Search in Google Scholar

11. doi:10.1016/j.cocis.2004.07.001, C. Pichot. Curr. Opin. Colloids Interface Sci. 9, 2132 (2004).Search in Google Scholar

12. doi:10.1016/S0079-6700(00)00024-1, K. Kawaguchi. Prog. Polym. Sci. 25, 1171 (2000).Search in Google Scholar

13. doi:10.1007/3-540-32702-9_2, A. Elaissari. Prog. Colloid Polym. Sci. 133, 9 (2006).Search in Google Scholar

14. doi:10.1016/j.progpolymsci.2007.05.003, A. Kumar, A. Srivastava, I. Y. Galaev, B. Mattiasson. Prog. Polym. Sci. 32, 534 (2007).Search in Google Scholar

15. doi:10.1016/j.progpolymsci.2007.01.006, Z. M. O. Rzaev, S. Dincer, E. Piskin. Prog. Polym. Sci. 32, 1205 (2007).Search in Google Scholar

16. doi:10.1016/j.polymer.2004.11.069, A. M. Santos, A. Elaissari, J. M. G. Martinho, C. Pichot. Polymer 46, 1181 (2005).Search in Google Scholar

17. doi:10.1021/la049609u, T. J. V. Prazeres, A. M. Santos, J. M. G. Martinho, A. Elaissari, C. Pichot. Langmuir 20, 6834 (2004).Search in Google Scholar

18. doi:10.1021/jp0489931, T. J. V. Prazeres, A. Fedorov, J. M. G. Martinho. J. Phys. Chem. B 108, 9032 (2004).Search in Google Scholar

19. doi:10.1021/jp804747b, T. J. V. Prazeres, J. P. S. Farinha, J. M. G. Martinho. J. Phys. Chem. C 112, 16331 (2008).Search in Google Scholar

20. doi:10.1021/jp066926w, A. A. Dar, G. M. Rather, A. R. Das. J. Phys. Chem. B 111, 3122 (2007).Search in Google Scholar

21. doi:10.1021/jp002345+, J. P. S. Farinha, J. G. Spiro, M. A. Winnik. J. Phys. Chem. B 105, 4879 (2001).Search in Google Scholar

22. doi:10.1023/A:1019114217567, J. P. S. Farinha, J. M. G. Martinho, L. Pogliani. J. Math. Chem. 21, 131 (1997).Search in Google Scholar

23. doi:10.1016/j.progpolymsci.2004.08.003, E. S. Gil, S. A. Hudson. Prog. Polym. Sci. 29, 1173 (2004).Search in Google Scholar

24. doi:10.1021/ma00208a014, F. M. Winnik. Macromolecules 23, 1647 (1990).Search in Google Scholar

25. doi:10.1021/j100373a088, H. G. Schild, D. A. Tirrell. J. Phys. Chem. 94, 4352 (1990).Search in Google Scholar

26. doi:10.1021/j100345a085, S. Fujishige, K. Kubota, I. Ando. J. Phys. Chem. 93, 3311 (1989).Search in Google Scholar

27. doi:10.1021/ma971873p, X. Wang, X. Qui, C. Wu. Macromolecules 31, 2972 (1998).Search in Google Scholar

28. doi:10.1021/j100451a030, T. Karstens, K. Kobs. J. Phys. Chem. 84, 1871 (1980).Search in Google Scholar

29. doi:10.1021/j100064a001, J. Karpiuk, Z. R. Grabowski, F. C. DeSchryver. J. Phys. Chem. 98, 3247 (1994).Search in Google Scholar

30. doi:10.1111/j.1751-1097.1999.tb08277.x, D. Magde, G. E. Rojas, P. G. Seybold. Photochem. Photobiol. 70, 737 (1999).Search in Google Scholar

31. doi:10.1063/1.1733166, S. J. Strickler, R. A. Berg. J. Chem. Phys. 37, 814 (1962).Search in Google Scholar

32. Handbook of Chemistry and Physics, 78th ed., CRC Press, New York (1997).Search in Google Scholar

33. doi:10.1021/ma9703517, J. Gao, C. Wu. Macromolecules 30, 6873 (1997).Search in Google Scholar

34. doi:10.1021/bi011969i, M. J. Harley, D. Toptygin, T. Troxler, J. F. Schildbach. Biochemistry 41, 6460 (2002).Search in Google Scholar

35. doi:10.1016/S0006-3495(77)85550-1, K. Kinosita, S. Kawato, A. Ikegami. Biophys. J. 20, 289 (1977).Search in Google Scholar

36. doi:10.1016/S0006-3495(80)85109-5, G. Lipari, A. Szabo. Biophys. J. 30, 489 (1980).Search in Google Scholar

37. doi:10.1021/jp0203447, G. B. Dutt. J. Phys. Chem. B 106, 7398 (2002).Search in Google Scholar

38. doi:10.1021/jp710625j, T. J. V. Prazeres, A. Fedorov, S. P. Barbosa, J. M. G. Martinho, M. N. Berberan-Santos. J. Phys. Chem. A 112, 5034 (2008).Search in Google Scholar

39. T. Forster. Ann. Phys. (Leipzig) 2, 55 (1948).10.1002/andp.19484370105Search in Google Scholar

40. T. Forster. Z. Naturforsch., A: Phys. Sci. 4, 321 (1949).Search in Google Scholar

41. doi:10.1021/jp9843858, (a) J. P. S. Farinha, K. Schillen, M. A. Winnik. J. Phys. Chem. B 103, 2487 (1999);Search in Google Scholar

41. doi:10.1021/jp960236i, (b) J. P. S. Farinha, J. M. G. Martinho, S. Kawaguchi, A. Yekta, M. A. Winnik. J. Phys. Chem. 100, 12552 (1996).Search in Google Scholar

42. doi:10.1063/1.1677735, E. Helfand, Y. Tagami. J. Chem. Phys. 56, 3592 (1972).Search in Google Scholar

43. doi:10.1021/la001338+, J. P. S. Farinha, M. T. Charreyre, J. M. G. Martinho, M. A. Winnik, C. Pichot. Langmuir 17, 2617 (2001).Search in Google Scholar

Published Online: 2009-08-26
Published in Print: 2009-08-26

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.1.2023 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-08-11-11/html
Scroll Up Arrow