Skip to content
Publicly Available Published by De Gruyter June 8, 2010

Body-on-a chip: Using microfluidic systems to predict human responses to drugs

  • Michael L. Shuler and Mandy B. Esch

Using an in vitro platform technology that combines microfabricated devices with cell culture, we seek to understand the response of the human body to pharmaceuticals and combinations of pharmaceuticals. Computer models of the human body guide the design of in vitro systems we call micro cell culture analogs (μCCAs) or “body-on-a-chip” devices. A μCCA device is a physical representation of a physiologically based pharmacokinetic (PBPK) model and contains mammalian cells cultured in interconnected microchambers to represent key organs linked through a circulatory system. μCCAs can provide inexpensive means for realistic, accurate, and rapid-throughput toxicological studies that do not require experimenting with animals and reveal toxic effects that can result from interactions between organs. As the natural length scale in biological systems is on the order of 10–100 μm, operating on the microscale allows us to mimic physiological relationships more accurately. We summarize proof-of-concept experiments using mixtures of drugs to treat multidrug-resistant (MDR) cancer and colon cancer. We discuss the extension of the μCCA concept to systems that connect barrier tissues with systemic circulation. Examples with models of the gastro-intestinal (GI) tract are provided.


IUPAC Congress, IUPAC Congress, CONGRESS, IUPAC Congress, 42nd, Glasgow, UK, 2009-08-02–2009-08-07


1 I. Kola, J. Landis. Nat. Rev. Drug Discovery3, 711 (2004).10.1038/nrd1470Search in Google Scholar

2 10.1038/nrd2813, B. Hughes. Nat. Rev. Drug Discovery8, 93 (2009).Search in Google Scholar

3 10.1007/s00449-009-0369-y, J. H. Sung, M. L. Shuler. Bioprocess Biosyst. Eng.33, 5 (2010).Search in Google Scholar

4 10.1002/jps.2600721003, L. E. Gerlowski, R. K. Jain. J. Pharm. Sci.72, 1103 (1983).Search in Google Scholar

5 10.1016/0887-2333(95)00007-U, L. M. Sweeney, M. L. Shuler, J. G. Babish, A. Ghanem. Toxicol. in Vitro9, 307 (1995).Search in Google Scholar

6 10.1021/bp034077d, A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, M. L. Shuler. Biotechnol. Prog.20, 338 (2004).Search in Google Scholar PubMed

7 D. H. Freedman. Newsweek CXLV1:59 (Oct. 10, 2005).10.1097/01.ta.0000187801.53919.e7Search in Google Scholar PubMed

8 10.1002/bit.22219, D. A. Tatosian, M. L. Shuler. Biotechnol. Bioeng.103, 187 (2009).Search in Google Scholar PubMed

9 10.1039/b901377f, J. H. Sung, M. L. Shuler. Lab Chip9, 1385 (2009).Search in Google Scholar PubMed

10 10.1021/bp0341996, K. Viravaidya, A. Sin, M. L. Shuler. Biotechnol. Prog.20, 316 (2004).Search in Google Scholar PubMed

11 10.1021/bp034238d, K. Viravaidya, M. L. Shuler. Biotechnol. Prog.20, 590 (2004).Search in Google Scholar PubMed

12 10.1039/b702392h, N. Korin, A. Bransky, U. Dinnar, S. Levenberg. Lab Chip7, 611 (2007).Search in Google Scholar PubMed

13 10.1016/j.bcp.2009.05.013, P. Chao, T. Maguire, E. Novik, K.-C. Cheng, M. L. Yarmush. Biochem. Pharmacol.78, 625 (2009).Search in Google Scholar PubMed PubMed Central

14 10.1126/science.1140171, M. C. Cushing, K. S. Anseth. Science316, 1133 (2007).Search in Google Scholar PubMed

15 10.1002/bit.22413, J. H. Sung, J. R. Choi, D. H. Kim, M. L. Shuler. Biotechnol. Bioeng.104, 516 (2009).Search in Google Scholar PubMed

16 10.1021/bp9901522, A. Ghanem, M. L. Shuler. Biotechnol. Prog.16, 334 (2000).Search in Google Scholar PubMed

17 10.1007/s10544-009-9286-8, J. H. Sung, M. L. Shuler. Biomed. Microdevices11, 731 (2009).Search in Google Scholar PubMed

18 10.1002/bit.21991, H. Xu, W. L. Kraus, M. L. Shuler. Biotechnol. Bioeng.101, 1276 (2008).Search in Google Scholar PubMed

19 10.1016/j.tiv.2005.12.008, J. Z. Xing, L. Zhu, S. Gabos, L. Xie. Toxicol. in Vitro20, 995 (2006).Search in Google Scholar PubMed

20 10.1016/j.tiv.2005.08.014, A. Natarajan, P. Molnar, K. Sieverdes, A. Jamshidi, J. Hickman. Toxicol. in Vitro20, 375 (2006).Search in Google Scholar PubMed

21 10.1039/b704513a, F. Asphahani, M. Zhang. Analyst132, 835 (2007).Search in Google Scholar

22 T. I. Oh, J. H. Sung, D. A. Tatosian, M. L. Shuler, D. Kim. Cytometry A71, 857 (2007).10.1002/cyto.a.20427Search in Google Scholar

23 10.1364/OL.30.001689, D. A. Tatosian, M. L. Shuler, D. Kim. Opt. Lett.30, 1689 (2005).Search in Google Scholar

24 C. Pascaud, M. Garrigos, S. Orlowski. Biochem. J.333, 351 (1998).Search in Google Scholar

25 M. Lehnert, W. S. Dalton, D. Roe, S. Emerson, S. E. Salmon. Blood77, 348 (1991).10.1182/blood.V77.2.348.348Search in Google Scholar

26 D. Powell. Am. J. Physiol.241, G275 (1981).10.1152/ajpgi.1981.241.4.G275Search in Google Scholar

27 10.1016/0308-8146(94)90189-9, J. J. Powell, M. W. Whitehead, S. Lee, R. P. H. Thompson. Food Chem.51, 381 (1994).Search in Google Scholar

28 10.2165/00003088-200241040-00001, M. M. Doherty, W. M. Charman. Clin. Pharmacokinet.41, 235 (2002).Search in Google Scholar

29 H. P. Rang, M. M. Dale, J. M. Ritter. Pharmacology, 4th ed., Churchill Livingston, Edinburgh (1999).Search in Google Scholar

30 10.1016/0928-0987(95)00007-Z, A. Wikman-Larhed, P. Arthurson. Eur. J. Pharm. Sci.3, 171 (1995).Search in Google Scholar

31 10.1021/js960110x, E. Walter, S. Januch, B. J. Roessler, J. M. Hilfinger, G. L. Amidon. J. Pharm. Sci.85, 1070 (1996).Search in Google Scholar

32 10.1002/(SICI)1520-6017(200001)89:1<63::AID-JPS7>3.0.CO;2-6, C. Hilgendorf, H. Spahn-Langguth, C. G. Regardh, E. Lipka, G. L. Amidon, P. Langguth. J. Pharm. Sci.89, 63 (2000).Search in Google Scholar

33 10.1016/S0169-409X(00)00128-9, P. Artursson, K. Palm, K. Luthman. Adv. Drug Delivery Rev.46, 27 (2001).Search in Google Scholar

34 J. F. Forstner, G. G. Forstner. “Gastrointestinal mucus”, in Physiology of the Gastronintestinal Tract, 3rd ed., L. R. Johnson (Ed.), pp. 1255–1283, Raven Press, New York (1994).Search in Google Scholar

35 10.1023/A:1018905109971, A. Wikman, J. Karlsson, I. Carlstedt, P. Arturrson. Pharm. Res.10, 843 (1993).Search in Google Scholar

36 M. E. Conrad, J. N. Umbreit, E. G. Moore. J. Am. Coll. Nutr.12, 720 (1993).Search in Google Scholar

37 M. E. Conrad, J. N. Umbreit, E. G. Moore. Adv. Exp. Med. Biol.356, 69 (1994).Search in Google Scholar

38 10.1016/j.jnutbio.2008.05.006, G. J. Mahler, M. L. Shuler, R. P. Glahn, J. Nutr. Biochem.20, 494 (2009).Search in Google Scholar PubMed

39 10.1016/j.tiv.2003.09.010, S. H. Choi, M. Nishikawa, A. Sakoda, Y. Sakai. Toxicol. in Vitro18, 393 (2004).Search in Google Scholar PubMed

40 10.1016/j.msec.2003.12.002, S. H. Choi, O. Fukuda, A. Sakoda, Y. Sakai. Mater. Sci. Eng., C24, 333 (2004).Search in Google Scholar

41 10.1114/1.1318926, M. R. Brand, T. L. Hannah, C. Mueller, Y. Cetin, F. G. Hamel. Ann. Biomed. Eng.28, 1210 (2000).Search in Google Scholar PubMed

42 10.1002/bit.22366, G. J. Mahler, M. B. Esch, R. P. Glahn, M. L. Shuler. Biotechnol. Bioeng.104, 193 (2009).Search in Google Scholar PubMed

43 10.1093/toxsci/67.2.322, J. S. Gujral, T. R. Knight, A. Farhood, M. L. Bajt, H. Jaeschke. Toxicol. Sci.67, 322 (2002).Search in Google Scholar PubMed

44 10.1023/A:1016207525186, B. H. Stewart, O. H. Chan, R. H. Lu, E. L. Reyner, H. L. Schmid, H. W. Hamilton, B. A. Steinbaugh, M. D. Taylor. Pharm. Res.12, 693 (1995).Search in Google Scholar

45 10.1016/j.jnutbio.2008.05.006, G. J. Mahler, M. L. Shuler, R. P. Glahn. J. Nutr. Biochem.20, 494 (2009).Search in Google Scholar

46 10.1083/jcb.137.1.231, V. M. Weaver, O. W. Petersen, F. Wang, C. A. Larabell, P. Briand, C. Damsky, M. J. Bissell. J. Cell Biol.137, 231 (1997).Search in Google Scholar PubMed PubMed Central

47 10.1039/b917763a, J. H. Sung, C. Kam, M. L. Shuler. Lab Chip10, 446 (2010).Search in Google Scholar PubMed

48 10.1002/bit.22516, P. M. van Midwoud, G. M. M. Groothuis, M. T. Merema, E. Verpoorte. Biotechnol. Bioeng.105, 184 (2010).Search in Google Scholar PubMed

Online erschienen: 2010-6-8
Erschienen im Druck: 2010-6-8

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.3.2023 from
Scroll to top button