Using an in vitro platform technology that combines microfabricated devices with cell culture, we seek to understand the response of the human body to pharmaceuticals and combinations of pharmaceuticals. Computer models of the human body guide the design of in vitro systems we call micro cell culture analogs (μCCAs) or “body-on-a-chip” devices. A μCCA device is a physical representation of a physiologically based pharmacokinetic (PBPK) model and contains mammalian cells cultured in interconnected microchambers to represent key organs linked through a circulatory system. μCCAs can provide inexpensive means for realistic, accurate, and rapid-throughput toxicological studies that do not require experimenting with animals and reveal toxic effects that can result from interactions between organs. As the natural length scale in biological systems is on the order of 10–100 μm, operating on the microscale allows us to mimic physiological relationships more accurately. We summarize proof-of-concept experiments using mixtures of drugs to treat multidrug-resistant (MDR) cancer and colon cancer. We discuss the extension of the μCCA concept to systems that connect barrier tissues with systemic circulation. Examples with models of the gastro-intestinal (GI) tract are provided.
Conference
IUPAC Congress, IUPAC Congress, CONGRESS, IUPAC Congress, 42nd, Glasgow, UK, 2009-08-02–2009-08-07
References
1 I. Kola, J. Landis. Nat. Rev. Drug Discovery3, 711 (2004).10.1038/nrd1470Search in Google Scholar
2 10.1038/nrd2813, B. Hughes. Nat. Rev. Drug Discovery8, 93 (2009).Search in Google Scholar
3 10.1007/s00449-009-0369-y, J. H. Sung, M. L. Shuler. Bioprocess Biosyst. Eng.33, 5 (2010).Search in Google Scholar
4 10.1002/jps.2600721003, L. E. Gerlowski, R. K. Jain. J. Pharm. Sci.72, 1103 (1983).Search in Google Scholar
5 10.1016/0887-2333(95)00007-U, L. M. Sweeney, M. L. Shuler, J. G. Babish, A. Ghanem. Toxicol. in Vitro9, 307 (1995).Search in Google Scholar
6 10.1021/bp034077d, A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, M. L. Shuler. Biotechnol. Prog.20, 338 (2004).Search in Google Scholar PubMed
7 D. H. Freedman. Newsweek CXLV1:59 (Oct. 10, 2005).10.1097/01.ta.0000187801.53919.e7Search in Google Scholar PubMed
8 10.1002/bit.22219, D. A. Tatosian, M. L. Shuler. Biotechnol. Bioeng.103, 187 (2009).Search in Google Scholar PubMed
9 10.1039/b901377f, J. H. Sung, M. L. Shuler. Lab Chip9, 1385 (2009).Search in Google Scholar PubMed
10 10.1021/bp0341996, K. Viravaidya, A. Sin, M. L. Shuler. Biotechnol. Prog.20, 316 (2004).Search in Google Scholar PubMed
11 10.1021/bp034238d, K. Viravaidya, M. L. Shuler. Biotechnol. Prog.20, 590 (2004).Search in Google Scholar PubMed
12 10.1039/b702392h, N. Korin, A. Bransky, U. Dinnar, S. Levenberg. Lab Chip7, 611 (2007).Search in Google Scholar PubMed
13 10.1016/j.bcp.2009.05.013, P. Chao, T. Maguire, E. Novik, K.-C. Cheng, M. L. Yarmush. Biochem. Pharmacol.78, 625 (2009).Search in Google Scholar PubMed PubMed Central
14 10.1126/science.1140171, M. C. Cushing, K. S. Anseth. Science316, 1133 (2007).Search in Google Scholar PubMed
15 10.1002/bit.22413, J. H. Sung, J. R. Choi, D. H. Kim, M. L. Shuler. Biotechnol. Bioeng.104, 516 (2009).Search in Google Scholar PubMed
16 10.1021/bp9901522, A. Ghanem, M. L. Shuler. Biotechnol. Prog.16, 334 (2000).Search in Google Scholar PubMed
17 10.1007/s10544-009-9286-8, J. H. Sung, M. L. Shuler. Biomed. Microdevices11, 731 (2009).Search in Google Scholar PubMed
18 10.1002/bit.21991, H. Xu, W. L. Kraus, M. L. Shuler. Biotechnol. Bioeng.101, 1276 (2008).Search in Google Scholar PubMed
19 10.1016/j.tiv.2005.12.008, J. Z. Xing, L. Zhu, S. Gabos, L. Xie. Toxicol. in Vitro20, 995 (2006).Search in Google Scholar PubMed
20 10.1016/j.tiv.2005.08.014, A. Natarajan, P. Molnar, K. Sieverdes, A. Jamshidi, J. Hickman. Toxicol. in Vitro20, 375 (2006).Search in Google Scholar PubMed
21 10.1039/b704513a, F. Asphahani, M. Zhang. Analyst132, 835 (2007).Search in Google Scholar
22 T. I. Oh, J. H. Sung, D. A. Tatosian, M. L. Shuler, D. Kim. Cytometry A71, 857 (2007).10.1002/cyto.a.20427Search in Google Scholar
23 10.1364/OL.30.001689, D. A. Tatosian, M. L. Shuler, D. Kim. Opt. Lett.30, 1689 (2005).Search in Google Scholar
24 C. Pascaud, M. Garrigos, S. Orlowski. Biochem. J.333, 351 (1998).Search in Google Scholar
25 M. Lehnert, W. S. Dalton, D. Roe, S. Emerson, S. E. Salmon. Blood77, 348 (1991).10.1182/blood.V77.2.348.348Search in Google Scholar
26 D. Powell. Am. J. Physiol.241, G275 (1981).10.1152/ajpgi.1981.241.4.G275Search in Google Scholar
27 10.1016/0308-8146(94)90189-9, J. J. Powell, M. W. Whitehead, S. Lee, R. P. H. Thompson. Food Chem.51, 381 (1994).Search in Google Scholar
28 10.2165/00003088-200241040-00001, M. M. Doherty, W. M. Charman. Clin. Pharmacokinet.41, 235 (2002).Search in Google Scholar
29 H. P. Rang, M. M. Dale, J. M. Ritter. Pharmacology, 4th ed., Churchill Livingston, Edinburgh (1999).Search in Google Scholar
30 10.1016/0928-0987(95)00007-Z, A. Wikman-Larhed, P. Arthurson. Eur. J. Pharm. Sci.3, 171 (1995).Search in Google Scholar
31 10.1021/js960110x, E. Walter, S. Januch, B. J. Roessler, J. M. Hilfinger, G. L. Amidon. J. Pharm. Sci.85, 1070 (1996).Search in Google Scholar
32 10.1002/(SICI)1520-6017(200001)89:1<63::AID-JPS7>3.0.CO;2-6, C. Hilgendorf, H. Spahn-Langguth, C. G. Regardh, E. Lipka, G. L. Amidon, P. Langguth. J. Pharm. Sci.89, 63 (2000).Search in Google Scholar
33 10.1016/S0169-409X(00)00128-9, P. Artursson, K. Palm, K. Luthman. Adv. Drug Delivery Rev.46, 27 (2001).Search in Google Scholar
34 J. F. Forstner, G. G. Forstner. “Gastrointestinal mucus”, in Physiology of the Gastronintestinal Tract, 3rd ed., L. R. Johnson (Ed.), pp. 1255–1283, Raven Press, New York (1994).Search in Google Scholar
35 10.1023/A:1018905109971, A. Wikman, J. Karlsson, I. Carlstedt, P. Arturrson. Pharm. Res.10, 843 (1993).Search in Google Scholar
36 M. E. Conrad, J. N. Umbreit, E. G. Moore. J. Am. Coll. Nutr.12, 720 (1993).Search in Google Scholar
37 M. E. Conrad, J. N. Umbreit, E. G. Moore. Adv. Exp. Med. Biol.356, 69 (1994).Search in Google Scholar
38 10.1016/j.jnutbio.2008.05.006, G. J. Mahler, M. L. Shuler, R. P. Glahn, J. Nutr. Biochem.20, 494 (2009).Search in Google Scholar PubMed
39 10.1016/j.tiv.2003.09.010, S. H. Choi, M. Nishikawa, A. Sakoda, Y. Sakai. Toxicol. in Vitro18, 393 (2004).Search in Google Scholar PubMed
40 10.1016/j.msec.2003.12.002, S. H. Choi, O. Fukuda, A. Sakoda, Y. Sakai. Mater. Sci. Eng., C24, 333 (2004).Search in Google Scholar
41 10.1114/1.1318926, M. R. Brand, T. L. Hannah, C. Mueller, Y. Cetin, F. G. Hamel. Ann. Biomed. Eng.28, 1210 (2000).Search in Google Scholar PubMed
42 10.1002/bit.22366, G. J. Mahler, M. B. Esch, R. P. Glahn, M. L. Shuler. Biotechnol. Bioeng.104, 193 (2009).Search in Google Scholar PubMed
43 10.1093/toxsci/67.2.322, J. S. Gujral, T. R. Knight, A. Farhood, M. L. Bajt, H. Jaeschke. Toxicol. Sci.67, 322 (2002).Search in Google Scholar PubMed
44 10.1023/A:1016207525186, B. H. Stewart, O. H. Chan, R. H. Lu, E. L. Reyner, H. L. Schmid, H. W. Hamilton, B. A. Steinbaugh, M. D. Taylor. Pharm. Res.12, 693 (1995).Search in Google Scholar
45 10.1016/j.jnutbio.2008.05.006, G. J. Mahler, M. L. Shuler, R. P. Glahn. J. Nutr. Biochem.20, 494 (2009).Search in Google Scholar
46 10.1083/jcb.137.1.231, V. M. Weaver, O. W. Petersen, F. Wang, C. A. Larabell, P. Briand, C. Damsky, M. J. Bissell. J. Cell Biol.137, 231 (1997).Search in Google Scholar PubMed PubMed Central
47 10.1039/b917763a, J. H. Sung, C. Kam, M. L. Shuler. Lab Chip10, 446 (2010).Search in Google Scholar PubMed
48 10.1002/bit.22516, P. M. van Midwoud, G. M. M. Groothuis, M. T. Merema, E. Verpoorte. Biotechnol. Bioeng.105, 184 (2010).Search in Google Scholar PubMed
© 2013 Walter de Gruyter GmbH, Berlin/Boston