Skip to content
Publicly Available Published by De Gruyter January 31, 2011

Rhodium-catalyzed enantioselective intermolecular hydroacylation reactions

  • Carlos González-Rodríguez and Michael C. Willis

Rhodium-catalyzed enantioselective hydroacylation reactions allow rapid access to chiral substituted ketones. However, due to the low reactivity of disubstituted alkenes in intermolecular versions of this process, only a small number of asymmetric intermolecular reactions have been described. Strategies employed to avoid reactivity issues include the use of norbornadienes, linear dienes, acrylamides, and allenes as the alkene components. In addition, our laboratory has recently reported the rhodium-catalyzed enantioselective inter-molecular alkyne hydroacylation reaction, leading to the formation of enone products via a kinetic resolution procedure.


International Conference on Organic Synthesis (ICOS-18), International Conference on Organic Synthesis, ICOS, Organic Synthesis, 18th, Bergen, Norway, 2010-08-01–2010-08-06


1a M. T. Reetz. In Stereocontrolled Organic Synthesis, B. M. Trost (Ed.), Blackwell Science, Oxford (1994).Search in Google Scholar

1b M. T. Reetz. In Catalytic Asymmetric Synthesis, 2nd ed., I. Ojima (Ed.), Wiley-VCH, New York (2000).Search in Google Scholar

2a 10.1021/cr900096x, M. C. Willis. Chem. Rev.110, 725 (2010).Search in Google Scholar

2b 10.1002/ejoc.200600846, C.-H. Jun, E.-A. Jo, J.-W. Park. Eur. J. Org. Chem. 1869 (2007).Search in Google Scholar

3a 10.1021/ja00470a054, J. W. Suggs. J. Am. Chem. Soc.100, 640 (1978).Search in Google Scholar

3b 10.1016/S0022-328X(00)94430-9, K. P. Vora, C. F. Lochow, R. G. Miller. J. Organomet. Chem.192, 257 (1980).Search in Google Scholar

3c 10.1246/bcsj.72.303, K. Kokubo, K. Matsumasa, Y. Nishinaka, M. Miura, M. Nomura. Bull. Chem. Soc. Jpn.72, 303 (1999).Search in Google Scholar

3d C.-H. Jun, D.-Y. Lee, H. Lee, J.-B. Hong. Angew. Chem., Int. Ed.39, 3070 (2000).Search in Google Scholar

3e 10.1002/1521-3773(20020617)41:12<2146::AID-ANIE2146>3.0.CO;2-2, C.-H. Jun, H. Lee, J.-B. Hong, B.-I. Kwon. Angew. Chem., Int. Ed.41, 2146 (2002).Search in Google Scholar

3f 10.1351/pac200476030577, C.-H. Jun, H. Lee. Pure Appl. Chem.76, 577 (2004).Search in Google Scholar

3g 10.1021/jo035395u, M. Imai, M. Tanaka, K. Tanaka, Y. Yamamoto, N. Imai-Ogata, M. Shimowatari, S. Nagumo, N. Kawahara, H. Suemune. J. Org. Chem.69, 1144 (2004).Search in Google Scholar

3h 10.1016/j.tetlet.2005.07.004, T. Tanaka, M. Tanaka, H. Suemune. Tetrahedron Lett.46, 6053 (2005).Search in Google Scholar

3i 10.1021/ol070153s, K. Tanaka, Y. Shibata, T. Suda, Y. Hagiwara, M. Hirano. Org. Lett.9, 1215 (2007).Search in Google Scholar

4 Methods without chelation control have also been described, see.Search in Google Scholar

4a 10.1016/S0022-328X(00)86794-7, P. Isnard, B. Denise, R. P. A. Sneeden, J. M. Cognion, P. Durual. J. Organomet. Chem.240, 285 (1982).Search in Google Scholar

4b 10.1021/om00096a037, T. B. Marder, D. C. Roe, D. Milstein. Organometallics7, 1451 (1988).Search in Google Scholar

4c 10.1021/jo00291a035, T. Kondo, M. Akazome, Y. Tsuji, Y. Watanabe. J. Org. Chem.55, 1286 (1990).Search in Google Scholar

4d 10.1021/ja980610n, C. P. Lenges, P. S. White, M. Brookhart. J. Am. Chem. Soc.120, 6965 (1998).Search in Google Scholar

4e 10.1002/anie.200602377, Y.-T. Hong, A. Barchuk, M. J. Krische. Angew. Chem., Int. Ed.45, 6885 (2006).Search in Google Scholar PubMed

4f 10.1021/ja066509x, A. H. Roy, C. P. Lenges, M. Brookhart. J. Am. Chem. Soc.129, 2082 (2007).Search in Google Scholar PubMed

4g 10.1021/ja806929y, S. Omura, T. Fukuyama, J. Horiguchi, Y. Murakami, I. Ryu. J. Am. Chem. Soc.130, 14094 (2008).Search in Google Scholar PubMed

4h 10.1021/ja805356j, F. Shibahara, J. F. Bower, M. J. Krische. J. Am. Chem. Soc.130, 14120 (2008).Search in Google Scholar PubMed PubMed Central

4i 10.1016/j.tet.2009.03.068, V. M. Williams, J. C. Leung, R. L. Patman, M. J. Krische. Tetrahedron65, 5024 (2009).Search in Google Scholar PubMed PubMed Central

5a 10.1039/b107852f, M. C. Willis, S. Sapmaz. Chem. Commun. 2558 (2001).Search in Google Scholar

5b 10.1002/anie.200352751, M. C. Willis, S. J. McNally, P. J. Beswick. Angew. Chem., Int. Ed.43, 340 (2004).Search in Google Scholar PubMed

5c 10.1021/ja056130v, M. C. Willis, R. L. Woodward. J. Am. Chem. Soc.127, 18012 (2005).Search in Google Scholar PubMed

5d 10.1021/jo060582o, M. C. Willis, H. E. Randell-Sly, R. L. Woodward, S. J. McNally, G. S. Currie. J. Org. Chem.71, 5291 (2006).Search in Google Scholar PubMed

5e 10.1002/anie.200603133, G. L. Moxham, H. E. Randell-Sly, S. K. Brayshaw, R. L. Woodward, A. S. Weller, M. C. Willis. Angew. Chem., Int. Ed.45, 7618 (2006).Search in Google Scholar PubMed

5f 10.1002/chem.200800738, G. L. Moxham, H. Randell-Sly, S. K. Brayshaw, A. S. Weller, M. C. Willis. Chem.—Eur. J.14, 8383 (2008).Search in Google Scholar PubMed

5g 10.1039/b810935d, J. D. Osborne, M. C. Willis. Chem. Commun. 5025 (2008).Search in Google Scholar PubMed

6 10.1021/ol050638l, M. C. Willis, H. E. Randell-Sly, R. L. Woodward, G. S. Currie. Org. Lett.7, 2249 (2005).Search in Google Scholar PubMed

7a 10.1039/c39830001215, B. R. James, C. G. Young. J. Chem. Soc., Chem. Comm. 1215 (1983).Search in Google Scholar

7b 10.1021/ar970095i, B. Bosnich. Acc. Chem. Res.31, 667 (1998), and references therein.Search in Google Scholar

7c 10.1021/jo000781m, M. Tanaka, M. Imai, M. Fujio, E. Sakamoto, M. Takahashi, Y. Eto-Kato, X. M. Wu, K. Funakoshi, K. Sakai, H. Suemune. J. Org. Chem.65, 5806 (2000), and references therein.Search in Google Scholar PubMed

7d 10.1021/ja0564416, K. Kundu, J. V. McCullagh, A. T. Morehead Jr. J. Am. Chem. Soc.127, 16042 (2005).Search in Google Scholar

7e 10.1021/ja901915u, M. M. Coulter, P. K. Dornan, V. M. Dong. J. Am. Chem. Soc.131, 6932 (2009).Search in Google Scholar

8a 10.1016/S0040-4039(00)60966-8, X. M. Wu, K. Funakoshi, K. Sakai. Tetrahedron Lett.33, 6331 (1992).Search in Google Scholar

8b 10.1021/ja00084a025, R. W. Barnhart, X. Wang, P. Noheda, S. H. Bergens, J. Whelan, B. Bosnich. J. Am. Chem. Soc.116, 1821 (1994).Search in Google Scholar

9 K. Tanaka, G. Fu. J. Am. Chem. Soc.124, 10246 (2002).Search in Google Scholar

10 10.1021/ja035489l, K. Tanaka, G. Fu. J. Am. Chem. Soc.125, 8078 (2003).Search in Google Scholar PubMed

11 See refs. [3g–i] and [4c–i] for examples that include disubstituted alkenes.Search in Google Scholar

12 10.1002/adsc.200600583, R. T. Stemmler, C. Bolm. Adv. Synth. Catal.349, 1185 (2007).Search in Google Scholar

13 10.1248/cpb.57.1158, Y. Inui, M. Tanaka, M. Imai, K. Tanaka, H. Suemune. Chem. Pharm. Bull.57, 1158 (2009).Search in Google Scholar PubMed

14 10.1021/ja905908z, Y. Shibata, K. Tanaka. J. Am. Chem. Soc.131, 12552 (2009).Search in Google Scholar PubMed

15 See ref. [3i].Search in Google Scholar

16 10.1021/ja8069133, J. D. Osborne, H. E. Randell-Sly, G. S. Currie, A. R. Cowley, M. C. Willis. J. Am. Chem. Soc.130, 17232 (2008).Search in Google Scholar PubMed

17 For a non-asymmetric hydroacylation employing allenes, see.Search in Google Scholar

17a ref. [3c].Search in Google Scholar

17b 10.1016/j.tet.2009.03.054, H. E. Randell-Sly, J. D. Osborne, R. L. Woodward, G. S. Currie, M. C. Willis. Tetrahedron65, 5110 (2009).Search in Google Scholar

18 10.1002/chem.201001748, C. González-Rodríguez, S. R. Parsons, A. L. Thompson, M.C. Willis. Chem.—Eur. J.16, 10950 (2010).Search in Google Scholar

19a 10.1002/anie.200460842, E. Vedejs, M. Jure. Angew. Chem., Int. Ed.44, 3974 (2005).Search in Google Scholar

19b 10.1002/1615-4169(20010129)343:1<5::AID-ADSC5>3.0.CO;2-I, J. M. Keith, J. F. Larrow, E. N. Jacobsen. Adv. Synth. Catal.343, 5 (2001).Search in Google Scholar

19c A. H. Hoveyda, M. T. Didiuk. Curr. Org. Chem.2, 537 (1998).Search in Google Scholar

19d H. B. Kagan, J. C. Fiaud. In Topics in Stereochemistry, E. L. Eliel, J. C. Fiaud (Eds.), Vol. 18, p. 249, John Wiley, New York (1988).Search in Google Scholar

20 10.1021/ja907711a, D. H. T. Phan, B. Kim, V. M. Dong. J. Am. Chem. Soc.131, 15608 (2009).Search in Google Scholar

21a 10.1016/S0040-4039(00)89719-1, M. Chérest, H. Felkin, N. Prudent. Tetrahedron Lett.9, 2199 (1968).Search in Google Scholar

21b 10.1021/cr980379w, A. Mengel, O. Reiser. Chem. Rev.99, 1191 (1999).Search in Google Scholar

22 10.1021/jo00083a004, C. R. Sarko, I. C. Guch, M. DiMare. J. Org. Chem.59, 705 (1994).Search in Google Scholar

23 While this manuscript was in the proof stage, two reports from the Dong group describing new enantioselective intermolecular hydroacylations appeared.Search in Google Scholar

23a 10.1021/ja107198e, M. M. Coulter, K. G. M. Kou, B. Galligan, V. M. Dong. J. Am. Chem. Soc.132, 16330 (2010).Search in Google Scholar

23b 10.1021/ja107738a, D. H. T. Phan, K. G. M. Kou, V. M. Dong. J. Am. Chem. Soc.132, 16354 (2010).Search in Google Scholar

Online erschienen: 2011-1-31
Erschienen im Druck: 2011-1-31

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.2.2024 from
Scroll to top button