Skip to content
Publicly Available Published by De Gruyter March 16, 2011

Laser-trapping assembling dynamics of molecules and proteins at surface and interface

  • Hiroshi Masuhara , Teruki Sugiyama , Thitiporn Rungsimanon , Ken-ichi Yuyama , Atsushi Miura and Jing-Ru Tu

Laser trapping of molecules and proteins in solution at room temperature is made possible by irradiating 1064-nm continuous-wave (CW) laser with power around 1 W. Although conventional small molecules are not trapped at the focal point, molecules that can form clusters upon assembling and proteins whose size is close to 10 nm are gathered, giving unique assembly structure. Glycine in H2O shows crystallization, urea in D2O gives a millimeter-sized giant droplet, and cobalt oxide-filled ferritin protein confirms assembly followed by precipitation. Solute concentration, solvent, and laser power are important factors for determining trapping and assembling phenomena, and the laser focal position is very critical. These unique behaviors are realized by setting the irradiation at the air/solution surface, inside the solution, and at the glass/solution interface. Laser trapping-induced crystallization, liquid/liquid phase separation, and precipitation are compared with the previous results and considered. After summarizing the results, we describe our future perspective and plans.


IUPAC Symposium on Photochemistry, International Symposium on Photochemistry, PHOTO, Photochemistry, XXIIIrd, Ferrara, Italy, 2010-07-11–2010-07-16


1 10.1351/pac199264091279, H. Masuhara. Pure Appl. Chem.64, 1279 (1992).Search in Google Scholar

2 10.1016/1010-6030(92)85067-5, H. Masuhara. J. Photochem. Photobiol. A62, 397 (1992).Search in Google Scholar

3 10.1016/1010-6030(92)85049-Z, H. Masuhara, N. Kitamura, H. Misawa, K. Sasaki, M. Koshioka. J. Photochem. Photobiol. A65, 235 (1992).Search in Google Scholar

4 H. Masuhara, F. C. De Schryver, N. Kitamura, N. Tamai (Eds.). Microchemistry: Spectroscopy and Chemistry in Small Domains, North Holland/Elsevier (1994).Search in Google Scholar

5 10.1351/pac200678122205, H. Masuhara, T. Asahi, Y. Hosokawa. Pure Appl. Chem.78, 2205 (2006).Search in Google Scholar

6 H. Masuhara, F. C. De Schryver (Eds.). Organic Mesoscopic Chemistry (IUPAC 21st century chemistry monograph), Blackwell Science, Oxford (1999).Search in Google Scholar

7 H. Masuhara, H. Nakanishi, K. Sasaki (Eds.). Single Organic Nanoparticles, Springer, Berlin (2003).10.1007/978-3-642-55545-9Search in Google Scholar

8 H. Fukumura, M. Irie, Y. Iwasawa, H. Masuhara, K. Uosaki (Eds.). Molecular Nano Dynamics, Vols. 1 and 2, Wiley-VCH (2008).10.1002/9783527627820Search in Google Scholar

9 10.1246/cl.2007.1480, T. Sugiyama, T. Adachi, H. Masuhara. Chem. Lett.36, 1480 (2010).Search in Google Scholar

10 10.1103/PhysRevLett.77.3475, B. A. Garetz, J. E. Aber, N. L. Goddard, R. G. Young, A. S. Myerson. Phys. Rev. Lett.77, 3475 (1996).Search in Google Scholar PubMed

11 10.1021/cg050460+, X. Sun, B. A. Garetz, A. S. Myerson. Cryst. Growth. Des.6, 684 (2006).Search in Google Scholar

12 10.1021/cg800028v, X. Sun, B. A. Garetz, A. S. Myerson. Cryst. Growth. Des.8, 1720 (2008).Search in Google Scholar

13 10.1021/cg8007415, A. J. Alexander, P. J. Camp. Cryst. Growth. Des.9, 958 (2009).Search in Google Scholar

14 10.1016/j.cplett.2009.09.049, M. R. Ward, I. Ballingall, M. L. Costen, K. G. McKendrik, A. J. Alexander. Chem. Phys. Lett.481, 25 (2009).Search in Google Scholar

15 10.1021/ja905232m, C. Duffus, P. J. Camp, A. J. Alexander. J. Am. Chem. Soc.131, 11676 (2009).Search in Google Scholar PubMed

16 H. Adachi, Y. Hosokawa, K. Takano, F. Tsunesada, H. Masuhara, M. Yoshimura, Y. Mori, T. Sasaki. J. Jpn. Assoc. Cryst. Growth29, 445 (2002).Search in Google Scholar

17 10.1143/JJAP.43.L941, S. Watanabe, S. Nagasaka, K. Noda, H. Tashiro. J. Jpn. Appl. Phys.43, L941 (2004).Search in Google Scholar

18 10.1143/JJAP.43.L1376, H. Adachi, S. Murakami, A. Niino, H. Matsumura, K. Takano, T. Inoue, Y. Mori, A. Yamaguchi, T. Sasaki. J. Jpn. Appl. Phys.43, L1376 (2004).Search in Google Scholar

19 10.1016/j.jphotochemrev.2007.06.002, T. Okutsu. J. Photochem. Photobiol. C: Photochem. Rev.8, 143 (2007).Search in Google Scholar

20 10.1021/jp9072334, Y. Tsuboi, T. Shoji, N. Kitamura. J. Phys. Chem. C114, 5589 (2009).Search in Google Scholar

21 10.1021/cg100830x, T. Rungsimanon, K. Yuyama, T. Sugiyama, H. Masuhara. Cryst. Growth Des.10, 4686 (2010).Search in Google Scholar

22 10.1021/jz100266t, K. Yuyama, T. Sugiyama, H. Masuhara. J. Phys. Chem. Lett.1, 1321 (2010).Search in Google Scholar

23 10.1016/j.jcrysgro.2008.10.084, K. Srinivasan. J. Cryst. Growth311, 156 (2008).Search in Google Scholar

24 10.1023/A:1025405508035, E. V. Boldyreva, V. A. Drebushchak, T. N. Drebushchak, I. E. Paukov, Y. A. Kovalevskaya, E. S. Shutova. J. Therm. Anal. Cal.73, 409 (2003).Search in Google Scholar

25 10.1023/A:1025457524874, E. V. Boldyreva, V. A. Drebushchak, T. N. Drebushchak, I. E. Paukov, Y. A. Kovalevskaya, E. S. Shutova. J. Therm. Anal. Cal.73, 419 (2003).Search in Google Scholar

26 10.1023/A:1013179702730, G. L. Perlovich, L. K. Hansen, A. Bauer-Brandl. J. Therm. Anal. Cal.66, 699 (2001).Search in Google Scholar

27 10.1107/S0365110X61000012, Y. Itaka. Acta Crystallogr.14, 1 (1961).Search in Google Scholar

28 10.1021/ja01874a028, G. Albrecht, R. B. Corey. J. Am. Chem. Soc.61, 1087 (1939).Search in Google Scholar

29 10.1016/j.jcrysgro.2008.10.084, K. Srinivasan. J. Cryst. Growth311, 156 (2008).Search in Google Scholar

30 10.1002/anie.200500164, I. Weissbuch, V. Y. Torbeev, L. Leiserowitz, M. Lahav. Angew. Chem., Int. Ed.44, 3226 (2005).Search in Google Scholar PubMed

31 10.1021/cg025561b, E. S. Ferrari, R. J. Davey, W. I. Cross, A. L. Gillon, C. S. Towler. Cryst. Growth. Des.3, 53 (2003).Search in Google Scholar

32 10.1016/j.jcrysgro.2007.11.072, X. Yang, J. Lu, X. J. Wang, C. B. Ching. J. Cryst. Growth310, 604 (2008).Search in Google Scholar

33 T. Balakrishnan, R. R. Babu, K. Ramamurthi. Spectrochim. Acta A69, 1114 (2008).10.1016/j.saa.2007.06.025Search in Google Scholar PubMed

34 10.1016/S0022-0248(02)01327-1, M. N. Bhat, S. M. Dharmaprakash. J. Cryst. Growth242, 245 (2002).Search in Google Scholar

35 10.1021/cg0602515, G. He, V. Bhamidi, S. R. Wilson, R. B. H. Tan, P. J. A. Kenis, C. F. Zukoski. Cryst. Growth Des.6, 1746 (2006).Search in Google Scholar

36 10.1021/cg049716m, A. Dawson, D. R. Allan, S. A. Belmonte, S. J. Clark, W. I. F. David, P. A. McGregor, S. Parsons, C. R. Pulham, L. Sawyer. Cryst. Growth Des.5, 1415 (2005).Search in Google Scholar

37 10.1021/cg0497344, S. Chattopadhyay, D. Erdermir, J. M. B. Evans, J. Ilavsky, H. Amentisch, C. U. Segre, A. S. Myerson. Cryst. Growth Des.5, 523 (2005).Search in Google Scholar

38 10.1021/jz900370x, T. Rungsimanon, K. Yuyama, T. Sugiyama, H. Masuhara, N. Tohnai, M. Miyata. J. Phys. Chem. Lett.1, 599 (2010).Search in Google Scholar

39 10.1021/jp065156l, S. Ito, T. Sugiyama, N. Toitani, G. Katayama, H. Miyasaka. J. Phys. Chem. B111, 2365 (2007).Search in Google Scholar

40 10.1117/12.860241, K. Yuyama, K. Ishiguro, T. Rungsimanon, T. Sugiyama, H. Masuhara. Proc. SPIE7762, 776236 (2010).Search in Google Scholar

41 10.1016/0022-0248(74)90084-0, K. S. Kunihisa. J. Cryst. Growth23, 351 (1974).Search in Google Scholar

42 10.1007/s10947-007-0050-8, G. B. Chernobai, Y. A. Chesalov, E. B. Burgina, T. N. Drebushchak, E. B. Bokdyreva. J. Struct. Chem.48, 332 (2007).Search in Google Scholar

43 10.1021/cg100525h, L. Stievano, F. Tielens, I. Lopes, N. Folliet, C. Gervais, D. Costa, J. F. Lambert. Cryst. Growth Des.10, 3657 (2010).Search in Google Scholar

44 10.1016/j.bpc.2007.10.003, Z. Liu, L. Zhong, P. Ying, Z. Feng, C. Li. Biophys. Chem.132, 18 (2008).Search in Google Scholar

45 10.1021/cg0605990, G. Di Profio, S. Tucci, E. Curcio, E. Drioli. Cryst. Growth Des.7, 526 (2007).Search in Google Scholar

46 10.1023/A:1022885510109, T. N. Drebushchak, E. V. Boldyreva, Y. V. Seryotkin, E. S. Shutova. J. Struct. Chem.43, 835 (2002).Search in Google Scholar

47 10.1016/S0022-0248(02)01208-3, V. A. Drebushchak, E. V. Boldyreva, T. N. Drebushchak, E. S. Shoutova. J. Cryst. Growth241, 266 (2002).Search in Google Scholar

48 10.1021/cg025561b, E. S. Ferrari, R. J. Davey, W. I. Cross, A. L. Gillon, C. S. Towler. Cryst. Growth Des.3, 53 (2003).Search in Google Scholar

49 10.1021/cg050190v, H. Y. Yoshikawa, Y. Hosokawa, H. Masuhara. Cryst. Growth Des.6, 302 (2006).Search in Google Scholar

50 10.1364/AO.17.002381, G. Da Costa, J. Calatroni. Appl. Opt.17, 2381 (1978).Search in Google Scholar PubMed

51 10.1021/la020508a, M. Gugliotti, M. S. Baptista, M. J. Politi. Langmuir18, 9792 (2002).Search in Google Scholar

52 10.1002/aic.690280511, L. S. Sorell, A. S. Myerson. AlChE J.28, 772 (1982).Search in Google Scholar

53 10.1364/OE.16.005673, O. A. Louchev, S. Juodkazis, N. Murazawa, S. Wada, H. Misawa. Opt. Exp.16, 5673 (2008).Search in Google Scholar

54 K. Kawahara, C. Tanford. J. Bio. Chem.241, 3228 (1966).Search in Google Scholar

55 10.1038/349684a0, F. C. Meldrum, V. J. Wade, D. L. Nimmo, B. R. Heywood, S. Mann. Nature349, 684 (1991).Search in Google Scholar

56 10.1038/30211, T. Douglas, M. Young. Nature393, 152 (1998).Search in Google Scholar

57 10.1093/jb/mvm187, K. Yoshizawa, Y. Mishima, S.-Y. Park, J. G. Heddle, J. R. H. Tame, K. Iwahori, M. Kobayashi, I. Yamashita. J. Biochem.142, 707 (2007).Search in Google Scholar

58 S. Takeda, M. Ohta, S. Ebina, K. Nagayama. Biochem. Biophys. Acta1174, 218 (1993).10.1016/0167-4781(93)90121-SSearch in Google Scholar

59 10.1002/bit.10748, M. Okuda, K. Iwahori, I. Yamashita, H. Yoshimura. Biotechnol. Bioeng.84, 187 (2003).Search in Google Scholar PubMed

60 10.1088/0957-4484/19/25/255201, A. Miura, R. Tsukamoto, S. Yoshii, I. Yamashita, Y. Uraoka, T. Fuyuki. Nanotechnology19, 255201 (2008).Search in Google Scholar PubMed

61 10.1246/bcsj.78.2075, R. Tsukamoto, K. Iwahori, M. Muraoka, I. Yamashita. Bull. Chem. Soc. J.78, 2075 (2005).Search in Google Scholar

62 10.1021/jp0441184, S. Masuo, H. Yoshikawa, H. G. Nothofer, A. C. Grimsdale, U. Scherf, K. Mullen, H. Masuhara. J. Phys. Chem. B109, 6917 (2005).Search in Google Scholar PubMed

63 10.1143/JJAP.46.449, Y. Nabetani, H. Yoshikawa, A. C. Grimsdale, K. Mullen, H. Masuhara. Jpn. J. Appl. Phys.46, 449 (2007).Search in Google Scholar

64 10.1021/jp056689h, D. Gallant, M. Pezolet, S. Simard. J. Phys. Chem. B.110, 6871 (2006).Search in Google Scholar PubMed

65 10.1007/s00396-002-0782-0, S. N. Kotsev, C. D. Duskin, I. K. Ilev, K. Nagayama. Colloid Polym. Sci.281, 343 (2003).Search in Google Scholar

66 10.1088/0957-4484/20/12/125702, A. Miura, R. Tanaka, Y. Uraoka, N. Matsukawa, I. Yamashita, T. Fuyuki. Nanotechnology20, 12570 (2009).Search in Google Scholar PubMed

67 10.1103/PhysRevLett.90.057403, T. Iida, H. Ishihara. Phys. Rev. Lett.90, 057403 (2003).Search in Google Scholar PubMed

68 10.1143/JJAP.45.L453, C. Hosokawa, H. Yoshikawa, H. Masuhara. Jpn. J. Appl. Phys.45, L453 (2006).Search in Google Scholar

Online erschienen: 2011-3-16
Erschienen im Druck: 2011-3-16

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.6.2023 from
Scroll to top button