Skip to content
Publicly Available Published by De Gruyter January 16, 2011

Chirospecific synthesis: Catalysis and chiral pool hand in hand

Ari M. P. Koskinen

Nature provides us with a wonderful pool of enantiopure starting materials for synthesis: amino acids, sugars, and many (but not all!) terpenes can be isolated even in large quantities in an uncompromised 100 % ee. Vicinal amino alcohols constitute a versatile group of organic structures; they are, in principle, available in enantiopure form from the chiral pool compounds or through chiral catalysis; they are potent intermediates for the synthesis of natural products and medicinally/biologically active compounds, and they provide a highly desirable scaffold for the construction of ligands for metals as well as organocatalysts. These new techniques will open up valuable new possibilities for the invention of new technologies for chemical synthesis, the desired course of chemical discoveries for the future. A robust entry to enantiopure vicinal amino alcohols from inexpensive naturally occurring amino acids has therefore become a key challenge for our endeavors in the development of methodology.


International Conference on Organic Synthesis (ICOS-18), International Conference on Organic Synthesis, ICOS, Organic Synthesis, 18th, Bergen, Norway, 2010-08-01–2010-08-06


1 10.1007/BF02457434, J. Schummer. Scientometrics39, 125 (1997).Search in Google Scholar

2 J. Schummer. HYLE—Int. J. Philos. Chem.7, 103 (2001).Search in Google Scholar

3 Catalysis for Energy, National Academy of Sciences, Washington, DC (2009). Accessed online 13 Dec. 2010. <>.Search in Google Scholar

4 Health and Medicine: Challenges for the Chemical Sciences in the 21stCentury, National Academy of Sciences, Washington, DC (2004). Accessed online 13 Dec. 2010. <>.Search in Google Scholar

5 Beyond the Molecular Frontier: Challenges for Chemistry and Chemical Engineering, National Academy of Sciences, Washington, DC (2003). Accessed online 13 Dec. 2010. <>.Search in Google Scholar

6 M. Oila, A. M. P. Koskinen. Arkivocxv, 76 (2006).10.3998/ark.5550190.0007.f10Search in Google Scholar

7 10.1021/jo9818935, M. K. Lindvall, A. M. P. Koskinen. J. Org. Chem.64, 4596 (1999).Search in Google Scholar

8 10.1002/ejoc.200801220, O. Bassas, J. Huuskonen, K. Rissanen, A. M. P. Koskinen. Eur. J. Org. Chem. 1340 (2009).Search in Google Scholar

9 10.1016/S0040-4020(03)00851-2, J. Tois, R. Franzen, A. Koskinen. Tetrahedron59, 5395 (2003).Search in Google Scholar

10 10.1016/S0040-4039(97)01678-X, U. Bauer, W.-B. Ho, A. M. P. Koskinen. Tetrahedron Lett.38, 7233 (1997).Search in Google Scholar

11 10.1110/ps.072846407, M. Andberg, J. Jäntti, S. Heilimo, P. Pihkala, A. Paananen, A. M. P. Koskinen, H. Söderlund, M. B. Linder. Protein Sci.16, 1751 (2007).Search in Google Scholar

12 10.1002/ejoc.200700926, T. Routasalo, K. Helaja, A. M. P. Koskinen. Eur. J. Org. Chem. 3190 (2008).Search in Google Scholar

13 10.1016/S0040-4020(00)00149-6, S. C. Bergmeier. Tetrahedron56, 2561 (2000).Search in Google Scholar

14 10.1055/s-1993-22506, A. M. P. Koskinen, P. M. Koskinen. Synlett 501 (1993).Search in Google Scholar

15 10.1016/S0040-4039(00)61793-8, A. M. P. Koskinen, J. M. Paul. Tetrahedron Lett.33, 6853 (1992).Search in Google Scholar

16 10.1016/S0040-4039(00)61696-9, A. M. P. Koskinen, P. M. Koskinen. Tetrahedron Lett.34, 6765 (1993).Search in Google Scholar

17 10.1016/S0076-6879(00)11100-0, P. M. Koskinen, A. M. P. Koskinen. Methods Enzymol.311, 458 (1999).Search in Google Scholar

18 10.1016/S0040-4020(03)00918-9, A. M. P. Koskinen, O. A. Kallatsa. Tetrahedron59, 6947 (2003).Search in Google Scholar

19 O. A. Kallatsa, M. Nissinen, A. M. P. Koskinen. Tetrahedron65, 9285 (2009).10.1016/j.tet.2009.09.017Search in Google Scholar

20 10.1021/np010659y, I. Kuroda, M. Musman, I. Ohtani, T. Ichiba, J. Tanaka, D. Garcia Gravalos, T. Higa. J. Nat. Prod.65, 1505 (2002).Search in Google Scholar

21 10.1016/j.tetlet.2007.12.014, M. Passiniemi, A. M. P. Koskinen. Tetrahedron Lett.49, 980 (2008).Search in Google Scholar

22 10.1016/S0040-4039(00)77062-6, P. Wipf, W. Xu. Tetrahedron Lett.35, 5197 (1994).Search in Google Scholar

23 10.1021/ol100037c, O. K. Karjalainen, M. Passiniemi, A. M. P. Koskinen. Org. Lett.12, 1145 (2010).Search in Google Scholar

24 10.1016/S0040-4020(02)01190-0, T. Murakami, K. Furusawa. Tetrahedron58, 9257 (2002).Search in Google Scholar

25 10.1039/C0OB00747A, O. K. Karjalainen, A. M. P. Koskinen. Org. Biomol. Chem.Search in Google Scholar

26 10.1021/jo9017588, A. Pelšs, E. T. T. Kumpulainen, A. M. P. Koskinen. J. Org. Chem.74, 7598 (2009).Search in Google Scholar

27 10.1021/jo00208a017, B. D. Christie, H. Rapoport. J. Org. Chem.50, 1239 (1985).Search in Google Scholar

28 10.1021/ja00235a035, W. D. Lubell, H. Rapoport. J. Am. Chem. Soc.109, 236 (1987).Search in Google Scholar

29 10.1016/S0040-4039(97)01182-9, A. M. P. Koskinen, J. Schwerdtfeger, M. Edmonds. Tetrahedron Lett.38, 5399 (1997).Search in Google Scholar

30 S. J. K. Sauerland, J. A. Castillo-Meléndez, K. Nättinen, K. Rissanen, A. M. P. Koskinen. Synthesis 757 (2010).Search in Google Scholar

31 10.3390/molecules15096512, E. J. Karppanen, A. M. P. Koskinen. Molecules15, 6512 (2010).Search in Google Scholar PubMed PubMed Central

Online erschienen: 2011-1-16
Erschienen im Druck: 2011-1-16

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow