2D free-energy surfaces for transfer of the methoxymethyl cation between two water molecules are constructed from molecular dynamics (MD) simulations in which these atoms are treated quantum-mechanically within a box of 1030 classical solvent water molecules at 300 K. This provides a simple model for glycosyl transfer in water. The AM1/TIP3P surfaces with 2D-spline corrections at either MPWB1K/6-31+G(d,p) or MP2/6-31+G(d,p) contain a shallow free-energy well corresponding to an oxacarbenium ion intermediate in a DN*AN mechanism. MD analysis at three temperatures leads to a classical estimate of the lifetime of the methoxymethyl cation in water; when quantum corrections for vibrational zero-point energy are included, the lifetime is estimated to be about 1 ps, in agreement with the best experimental estimate. This suggests that computational simulation, with appropriate high-level correction, is a reliable tool to obtain detailed and reliable mechanistic descriptions for glycosidases. In view of the importance of developing improved anti-influenza drugs, simulations of sialidases that considered both sialyl oxacarbenium ion and covalent sialyl-enzyme as possible intermediates could provide particular insight.
Conference
International Conference on Physical Organic Chemistry (ICPOC-20), International Conference on Physical Organic Chemistry, ICPOC, Physical Organic Chemistry, 20th, Busan, Korea, 2010-08-22–2010-08-27
References
1 10.1111/j.1432-1033.1992.tb17055.x, A. K. J. Chong, M. S. Pegg, N. R. Taylor, M. von Itzstein. Eur. J. Biochem.207, 335 (1992).Search in Google Scholar PubMed
2 10.1021/jm00031a011, N. R. Taylor, M. von Itzstein. J. Med. Chem.37, 616 (1994).Search in Google Scholar PubMed
3 10.1021/ja0344967, A. G. Watts, I. Damager, M. L. Amaya, A. Buschiazzo, P. Alzari, A. C. Frasch, S. G. Withers. J. Am. Chem. Soc.125, 7532 (2003).Search in Google Scholar PubMed
4 10.1074/jbc.M710247200, S. L. Newstead, J. A. Potter, J. C. Wilson, G. Xu, C-H. Chien, A. G. Watts, S. G. Withers, G. L. Taylor. J. Biol. Chem.283, 9080 (2008).Search in Google Scholar PubMed PubMed Central
5 10.1021/ar970172, D. L. Zechel, S. G. Withers. Acc. Chem. Res.33, 11 (2000).Search in Google Scholar
6 10.1098/rspb.1967.0035, C. C. F. Blake, L. N. Johnson, G. A. Mair, A. C. T. North, D. C. Phillips, V. R. Sarma. Proc. R. Soc. London B167, 378 (1967).Search in Google Scholar PubMed
7 10.1111/j.1469-185X.1953.tb01386.x, D. E. Koshland. Biol. Rev.28, 416 (1953).Search in Google Scholar
8 10.1098/rspb.1967.0036, C. A. Vernon. Proc. R. Soc. London B167, 389 (1967).Search in Google Scholar PubMed
9 A. Fersht. Structure and Mechanism in Protein Science, Freeman (1999).Search in Google Scholar
10 10.1038/35090602, D. J. Vocadlo, G. J. Davies, R. Raine, S. G. Withers. Nature412, 835 (2001).Search in Google Scholar PubMed
11 10.1038/nsb0901-737, A. J. Kirby. Nat. Struct. Biol.8, 737 (2001).Search in Google Scholar PubMed
12 10.1016/S0065-2318(07)61006-3, T. Islam, M. von Itzstein. Adv. Carbohydr. Chem. Biochem.61, 293 (2008).Search in Google Scholar
13 M. L. Sinnott. Carbohydrate Chemistry and Biochemistry: Structure and Mechanism, RSC Publishing, Cambridge, UK (2007).Search in Google Scholar
14 10.1021/ja00202a033, T. L. Amyes, W. P. Jencks. J. Am. Chem. Soc.111, 7888 (1989).Search in Google Scholar
15 10.1039/b108446c, A. J. Bennet, T. E. Kitos. J. Chem. Soc., Perkin Trans. 2 1207 (2002).Search in Google Scholar
16 10.1021/ar50150a001, W. P. Jencks. Acc. Chem. Res.13, 161 (1980).Search in Google Scholar
17 10.1039/cs9811000345, W. P. Jencks. Chem. Soc. Rev.10, 345 (1981).Search in Google Scholar
18 10.1039/p29780000357, G. A. Craze, A. J. Kirby, R. Osborne. J. Chem. Soc., Perkin Trans. 2 357 (1978).Search in Google Scholar
19 10.1021/ja00542a021, B. L. Knier, W. P. Jencks. J. Am. Chem. Soc.102, 6789 (1980).Search in Google Scholar
20 10.1002/1096-987X(200009)21:12<1088::AID-JCC5>3.0.CO;2-8, M. J. Field, M. Albe, C. Bret, F. Proust-De Martin, A. Thomas. J. Comput. Chem.21, 1088 (2000).Search in Google Scholar
21 10.1021/jp910539j, J. J. Ruiz-Pernía, I. Tuñón, I. H. Williams. J. Phys. Chem. B114, 5769 (2010).Search in Google Scholar
22a 10.1021/jp049633g, J. J. Ruiz-Pernía, E. Silla, I. Tuñón, S. Martí, V. Moliner. J. Phys. Chem. B108, 8427 (2004).Search in Google Scholar
22b 10.1021/jp063520a, J. J. Ruiz-Pernía, E. Silla, I. Tuñón, S. Martí. J. Phys. Chem. B110, 17663 (2006).Search in Google Scholar PubMed
23 10.1021/ja00467a019, P. R. Young, W. P. Jencks. J. Am. Chem. Soc.99, 8238 (1977).Search in Google Scholar
24 10.1021/jp805217u, D. Laage, J. T. Hynes. J. Phys. Chem. B112, 14230 (2008).Search in Google Scholar PubMed
25 10.1016/j.molliq.2007.07.003, A. Beneduci. J. Mol. Liq.138, 55 (2008).Search in Google Scholar
26 10.1039/b911644c, M. E. S. Soliman, J. J. Ruiz-Pernía, I. R. Greig, I. H. Williams. Org. Biomol. Chem.7, 5236 (2009).Search in Google Scholar PubMed
27 10.1021/ja065944o, S. Kozmon, I. Tvaroška. J. Am. Chem. Soc.128, 16921 (2006).Search in Google Scholar PubMed
28 10.1039/b810099c, A. L. Bowman, I. M. Grant, A. J. Mulholland. Chem. Commun. 4425 (2008).Search in Google Scholar PubMed
29 10.1021/jp909177e, J. Liu, X. Wang, D. Xu. J. Phys. Chem. B114, 1462 (2010).Search in Google Scholar PubMed
30 10.1021/jp811470d, L. Petersen, A. Ardèvol, C. Rovira, P. J. Reilly. J. Phys. Chem. B113, 7331 (2009).Search in Google Scholar PubMed
31 10.1021/ja909249u, L. Petersen, A. Ardèvol, C. Rovira, P. J. Reilly. J. Am. Chem. Soc.132, 8291 (2010).Search in Google Scholar PubMed
32 R. Castillo, G. D. Ruggiero, I. H. Williams. Paper in preparation.Search in Google Scholar
© 2013 Walter de Gruyter GmbH, Berlin/Boston