Skip to content
Publicly Available Published by De Gruyter February 7, 2011

Development of transition-metal-catalyzed cycloaddition reactions leading to polycarbocyclic systems

Moisés Gulías, Fernando López and José L. Mascareñas

We present a compilation of methodologies developed in our laboratories to assemble polycyclic structures containing small- and medium-sized cycles, relying on the use of transition-metal-catalyzed (TMC) cycloadditions. First, we discuss the use of alkylidenecyclopropanes (ACPs) as 3C-atom partners, in particular in their Pd-catalyzed (3 + 2) cycloadditions with alkynes, alkenes, and allenes, reactions that lead to cyclopentane-containing polycyclic products in excellent yields. Then, we present the expansion of this chemistry to a (4 + 3) annulation with conjugated dienes, and to inter- and intramolecular (3 + 2 + 2) cycloadditions using external alkenes as additional 2C-π-systems. These reactions allow the preparation of different types of polycyclic structures containing cycloheptene rings, the topology of the products depending on the use of Pd or Ni catalysts. Finally, we include our more recent discoveries on the development of (4 + 3) and (4 + 2) intramolecular cyclo-additions of allenes and dienes, promoted by Pt and Au catalysts, and discuss mechanistic insights supported by experimental and density functional theory (DFT) calculations. An enantioselective version of the (4 + 2) cycloaddition with phosphoramidite Au(I) catalysts is also presented.


Conference

International Conference on Organic Synthesis (ICOS-18), International Conference on Organic Synthesis, ICOS, Organic Synthesis, 18th, Bergen, Norway, 2010-08-01–2010-08-06


References

1a P. A. Wender, S. T. Handy, D. L. Wright. Chem. Ind. 765 (1997).Search in Google Scholar

1b T. Hudlicky, M. G. Natchus. Organic Synthesis: Theory and Applications, T. Hudlicky (Ed.), JAI Press, Greenwich (1993).Search in Google Scholar

1c 10.1021/cr9500803, P. A. Wender. Chem. Rev.96, 1 (1996).Search in Google Scholar PubMed

1d 10.1038/460197a, P. A. Wender, B. L. Miller. Nature460, 197 (2009).Search in Google Scholar PubMed PubMed Central

2 10.1021/cr950016l, M. Lautens, W. Klute, W. Tam. Chem. Rev.96, 49 (1996) and refs. therein.Search in Google Scholar PubMed

3 For selected examples of TMC (5 + 2) cycloadditions, see.Search in Google Scholar

3a 10.1351/pac200274010025, P. A. Wender, F. C. Bi, G. G. Gamber, F. Gosselin, R. D. Hubbard, M. J. C. Scanio, R. Sun, T. J. Williams, L. Zhang. Pure App. Chem.74, 25 (2002).Search in Google Scholar

3b 10.1002/chem.200401065, B. M. Trost, H. C. Shen, D. B. Horne, F. D. Toste, B. G. Steinmetz, C. Koradin. Chem.—Eur. J.11, 2577 (2005); for selected examples of TMC (3 + 2 + 2) cyclo-additions, see.Search in Google Scholar PubMed

3c 10.1021/ja803691p, P. A. Evans, P. A. Inglesby. J. Am. Chem. Soc.130, 12838 (2008).Search in Google Scholar PubMed

3d 10.1021/jo7014714, S. Saito, S. Komagawa, I. Azumaya, M. Masuda. J. Org. Chem.72, 9114 (2007) and refs. therein; for selected examples of TMC (3 + 2) cycloadditions, see.Search in Google Scholar PubMed

3e 10.1021/ja0710196, H. T. Chang, T. T. Jayanth, C. H. Cheng. J. Am. Chem. Soc.129, 4166 (2007).Search in Google Scholar PubMed

3f 10.1021/ja065868p, P. A. Wender, T. J. Paxton, T. J. Williams. J. Am. Chem. Soc.128, 14814 (2006); for a (4 + 3 + 2) example, see.Search in Google Scholar PubMed

3g 10.1002/anie.200907052, S. Saito, K. Maeda, R. Yamasaki, T. Kitamura, M. Nakagawa, K. Kato, I. Azumaya, H. Masu. Angew. Chem., Int. Ed.49, 1830 (2010).Search in Google Scholar PubMed

4 For reviews on metal-promoted reactions of MCPs, see.Search in Google Scholar

4a P. Binger, H. M. Büch. Top. Curr. Chem.135, 77 (1987).Search in Google Scholar

4b 10.1002/1615-4169(200202)344:2<111::AID-ADSC111>3.0.CO;2-0, I. Nakamura, Y. Yamamoto. Adv. Synth. Catal.344, 111 (2002).Search in Google Scholar

4c 10.1021/cr010005u, A. Brandi, S. Cachi, F. M. Cordero, A. Goti. Chem. Rev.103, 1213 (2003).Search in Google Scholar

5 10.1021/ja00037a006, A. Stolle, J. Ollivier, P. Piras, J. Salaün, A. de Meijere. J. Am. Chem. Soc.114, 4051 (1992).Search in Google Scholar

6a 10.1021/ja0356333, A. Delgado, J. R. Rodríguez, L. Castedo, J. L. Mascareñas. J. Am. Chem. Soc.125, 9282 (2003); for an analogous cycloaddition reaction promoted by a Ru catalyst, see.Search in Google Scholar

6b 10.1021/ja0480466, F. López, A. Delgado, J. R. Rodríguez, L. Castedo, J. L. Mascareñas. J. Am. Chem. Soc.126, 10262 (2004).Search in Google Scholar

7 For a DFT study on the mechanism of these reactions, see.Search in Google Scholar

7a 10.1002/chem.200700973, R. García-Fandiño, M. Gulías, L. Castedo, J. R. Granja, J. L. Mascareñas, D. J. Cárdenas. Chem.—Eur. J.14, 272 (2008); see also.Search in Google Scholar

7b 10.1021/ic991093s, T. Suzuki, H. Fujimoto. Inorg. Chem.39, 1113 (2000).Search in Google Scholar

8 10.1021/ol0524095, J. Durán, M. Gulías, L. Castedo, J. L. Mascareñas. Org. Lett.7, 5693 (2005).Search in Google Scholar

9 10.1021/ja054487t, M. Gulías, R. García, A. Delgado, L. Castedo, J. L. Mascareñas. J. Am. Chem. Soc.128, 384 (2006).Search in Google Scholar

10 10.1002/adsc.200600347, B. Trillo, M. Gulías, F. López, L. Castedo, J. L. Mascareñas. Adv. Synth. Catal.348, 2381 (2006).Search in Google Scholar

11 10.1021/ja0756467, M. Gulías, J. Durán, F. López, L. Castedo, J. L. Mascareñas. J. Am. Chem. Soc.129, 11026 (2007).Search in Google Scholar

12 10.1039/b919258a, G. Bhargava, B. Trillo, M. Araya, F. López, L. Castedo, J. L. Mascareñas. Chem. Commun.46, 270 (2010).Search in Google Scholar

13 10.1002/anie.201004438, L. Saya, G. Bhargava, M. A. Navarro, M. Gulías, F. López, I. Fernández, L. Castedo, J. L. Mascareñas. Angew. Chem., Int. Ed.49, 9886 (2010).Search in Google Scholar

14 10.1002/chem.201002366, F. López, J. L. Mascareñas. Chem.—Eur. J.17, 418 (2011).Search in Google Scholar

15 For example, see.Search in Google Scholar

15a 10.1021/ja062045r, Z. Zhang, C. Liu, R. E. Kinder, X. Han, H. Qian, R. A. Widenhoefer. J. Am. Chem. Soc.128, 9066 (2006).Search in Google Scholar

15b 10.1021/ol070483c, C. Liu, R. A. Widenhoefer. Org. Lett.9, 1935 (2007).Search in Google Scholar

15c 10.1002/anie.200604006, J. H. Lee, F. D. Toste. Angew. Chem., Int. Ed.46, 912 (2007).Search in Google Scholar

15d 10.1002/anie.200603986, H. Funami, H. Kusama, N. Iwasawa. Angew. Chem., Int. Ed.46, 909 (2007).Search in Google Scholar

16 M. Harmata. Adv. Cycloadd.4, 41 (1997).10.1016/S1052-2077(97)80004-2Search in Google Scholar

17 10.1002/anie.200704566, B. Trillo, F. López, M. Gulías, L. Castedo, J. L. Mascareñas. Angew. Chem., Int. Ed.47, 951 (2008).Search in Google Scholar PubMed

18 10.1002/chem.200900164, B. Trillo, F. López, S. Montserrat, G. Ujaque, L. Castedo, A. Lledós, J. L. Mascareñas. Chem.—Eur. J.15, 3336 (2009).Search in Google Scholar PubMed

19 For related studies published by other groups, see.Search in Google Scholar

19a 10.1021/ja901649s, P. Mauleón, R. M. Zeldin, A. Z. González, F. D. Toste. J. Am. Chem. Soc.131, 6348 (2009).Search in Google Scholar PubMed PubMed Central

19b 10.1002/chem.200902185, B. W. Gung, D. T. Craft, L. N. Bailey K. Kirschbaum. Chem.—Eur. J.16, 639 (2010).Search in Google Scholar PubMed PubMed Central

20 10.1021/ja905415r, I. Alonso, B. Trillo, F. López, S. Montserrat, G. Ujaque, L. Castedo, A. Lledós, J. L. Mascareñas. J. Am. Chem. Soc.131, 13020 (2009).Search in Google Scholar PubMed

21 10.1002/chem.201001714, I. Fernández, F. P. Cossío, A. de Cózar, A. Lledós, J. L. Mascareñas. Chem.—Eur. J.16, 12147 (2010).Search in Google Scholar PubMed

22 For related work from other groups, see.Search in Google Scholar

22a 10.1021/ol902622b, A. Z. Gonzalez, F. D. Toste. Org. Lett.12, 200 (2010).Search in Google Scholar PubMed PubMed Central

22b H. Teller, S. Flugge, R. Goddard, A. Fürstner. Angew. Chem., Int. Ed.49, 1949 (2010).Search in Google Scholar

Online erschienen: 2011-2-7
Erschienen im Druck: 2011-2-7

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow