Skip to content
Publicly Available Published by De Gruyter October 4, 2011

Environmentally benign and effective syntheses of N-substituted carbamates via alcoholysis of disubstituted ureas over TiO2/SiO2 catalyst

  • Liguo Wang , Jianpeng Shang , Shimin Liu , Lequan Liu , Shiguo Zhang and Youquan Deng

Catalytic syntheses of cyclohexyl carbamates via alcoholysis of dicyclohexyl urea (DCU), which can be synthesized from CO2 and amines, were first investigated with low-molecular-weight alcohols, i.e., methanol, ethanol, butan-1-ol. TiO2/SiO2 catalyst was prepared by wet impregnation method using tetrabutyl titanate as titanium source. The catalyst was characterized by inductively coupled plasma/atomic emission spectroscopy (ICP/AES), N2 adsorption, X-ray diffraction (XRD), field emission/scanning electron microscopy (FE/SEM), transmission electron microscopy TEM), and NH3/temperature-programmed desorption (TPD) in detail. TiO2/SiO2 with 5 wt % loadings and calcination at 600 °C exhibited better catalytic activity, and excellent yields of >95 % with 98 % selectivities for desired carbamates were achieved. Accordingly, the strong acidity was considered to be responsible for its superior activity. Moreover, the catalytic activity can essentially be preserved during the recycling tests. The scope was also expanded to synthesize other alkyl or aryl carbamates via alcoholysis of the corresponding disubstituted ureas, and 94 % yields with 96 % selectivities can be achieved. It provided a good candidate for the organic carbamates syntheses via a phosgene/halogen-free and effective route.

References

1a J. Barthelemy. Lyon Pharm.37, 297 (1986).10.1093/jts/37.1.297-aSearch in Google Scholar

1b D. B. Dell’Amico, F. Calderazzo, L. Labella, F. Marchetti, G. Pampaloni. Chem. Rev.103, 269 (2003).Search in Google Scholar

1c 10.1016/S0010-8545(99)00230-1, F. Paul. Coord. Chem. Rev.203, 269 (2000).Search in Google Scholar

1d 10.1023/B:CATL.0000034285.05419.7e, R. Srivastava, M. D. Manju, D. Srinivas, P. Ratnasamy. Catal. Lett.97, 41 (2004).Search in Google Scholar

2 10.2174/157017907781369298, D. Chaturvedi, N. Mishra, V. Mishra. Curr. Org. Syn.4, 308 (2007).Search in Google Scholar

3 Ullmann’s Encyclopedia of Industrial Chemistry, 6th ed., electronic version, Wiley-VCH (2000).Search in Google Scholar

4a 10.1039/b009575n, F. Shi, Y. Deng. Chem. Commun. 443 (2001).Search in Google Scholar

4b 10.1016/S1381-1169(02)00550-2, B. Chen, S. S. C. Chuang. J. Mol. Catal., A: Chem.195, 37 (2003).Search in Google Scholar

4c 10.1006/jcat.2001.3350, F. Shi, Y. Deng, T. Sima, H. Yang. J. Catal.203, 525 (2001).Search in Google Scholar

4d 10.1039/c39920001467, F. Ragaini, S. Cenini, F. Demartin. J. Chem. Soc., Chem. Commun. 1467 (1992).Search in Google Scholar

5 10.1016/j.jcat.2007.11.004, M. Distaso, E. Quaranta. J. Catal.253, 278 (2008).Search in Google Scholar

6 10.1039/b700658f, M. Aresta, A. Dibenedetto. Dalton Trans.28, 2975 (2007).Search in Google Scholar PubMed

7 10.1021/jo001140u, R. Salvatore, S. Shin, A. Nagle, K. Jung. J. Org. Chem.66, 1035 (2001).Search in Google Scholar PubMed

8 10.1039/b106201h, M. Abla, J. Choi, T. Sakakura. Chem. Commun.21, 2238 (2001).Search in Google Scholar PubMed

9 10.1039/b711197e, A. Ion, C. V. Doorslaer, V. Parvulescu, P. Jacobs, D. D. Vos. Green Chem.10, 111 (2008).Search in Google Scholar

10 S. N. Mantrov, A. A. Orlova, A. L. Chimishkyan. Russ. RU 2359958 C2 20090627 (2009).Search in Google Scholar

11 10.1002/anie.200351098, F. Shi, Y. Deng, T. Sima, J. Peng, Y. Gu, B. Qiao. Angew. Chem., Int. Ed.42, 3257 (2003).Search in Google Scholar PubMed

12 10.1006/jcat.1994.1285, C. B. Khouw, C. B. Dartt, J. A. Labinger, M. E. Davis. J. Catal.149, 195 (1994).Search in Google Scholar

13 10.1007/BF00806570, S. Klein, J. A. Martens, R. Parton, K. Vercruysse, P. Jacobs, W. F. Maier. Catal. Lett.38, 209 (1996).Search in Google Scholar

14 10.1006/jcat.1999.2495, W. Kim, J. S. Lee. J. Catal.185, 307 (1999).Search in Google Scholar

15 10.1016/j.jcat.2006.12.015, B. Bonelli, M. Cozzolino, R. Tesser, M. Di Serio, M. Piumetti, E. Garrone, E. Santacesaria. J. Catal.246, 293 (2007).Search in Google Scholar

16 10.1007/BF00772604, H. Kanai, H. Kobayashi. Catal. Lett.20, 125 (1993).Search in Google Scholar

17 10.1021/jp902200c, J. Lu, K. M. Kosuda, R. P. Van Duyne, P. C. Stair. J. Phys. Chem. C113, 12412 (2009).Search in Google Scholar

18 E. Santacesaria, M. Cozzolino, M. Di Serio, A. M. Venezia, R. Tesser. Appl. Catal., A270, 177 (2004).10.1016/j.apcata.2004.05.003Search in Google Scholar

19 10.1016/j.molcata.2003.12.020, S. Wang, X. Ma, H. Guo, J. Gong, X. Yang, G. Xu. J. Mol. Catal., A: Chem.214, 273 (2004).Search in Google Scholar

20 10.1021/ja01864a025, S. Brunauer, L. Deming, W. E. Deming, E. Teller. J. Am. Chem. Soc.62, 1723 (1940).Search in Google Scholar

21 10.1021/jp710283p, G. Tian, H. Fu, L. Jing, B. Xin, K. Pan. J. Phys. Chem. C112, 3083 (2008).Search in Google Scholar

22 10.1351/pac200577101719, P. Tundo, S. Bressanello, A. Loris, G. Sathicq. Pure Appl. Chem.77, 1719 (2005).Search in Google Scholar

Online erschienen: 2011-10-4
Erschienen im Druck: 2011-10-4

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.11.2023 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-11-05-06/html
Scroll to top button