Catalytic syntheses of cyclohexyl carbamates via alcoholysis of dicyclohexyl urea (DCU), which can be synthesized from CO2 and amines, were first investigated with low-molecular-weight alcohols, i.e., methanol, ethanol, butan-1-ol. TiO2/SiO2 catalyst was prepared by wet impregnation method using tetrabutyl titanate as titanium source. The catalyst was characterized by inductively coupled plasma/atomic emission spectroscopy (ICP/AES), N2 adsorption, X-ray diffraction (XRD), field emission/scanning electron microscopy (FE/SEM), transmission electron microscopy TEM), and NH3/temperature-programmed desorption (TPD) in detail. TiO2/SiO2 with 5 wt % loadings and calcination at 600 °C exhibited better catalytic activity, and excellent yields of >95 % with 98 % selectivities for desired carbamates were achieved. Accordingly, the strong acidity was considered to be responsible for its superior activity. Moreover, the catalytic activity can essentially be preserved during the recycling tests. The scope was also expanded to synthesize other alkyl or aryl carbamates via alcoholysis of the corresponding disubstituted ureas, and 94 % yields with 96 % selectivities can be achieved. It provided a good candidate for the organic carbamates syntheses via a phosgene/halogen-free and effective route.
References
1a J. Barthelemy. Lyon Pharm.37, 297 (1986).10.1093/jts/37.1.297-aSearch in Google Scholar
1b D. B. Dell’Amico, F. Calderazzo, L. Labella, F. Marchetti, G. Pampaloni. Chem. Rev.103, 269 (2003).Search in Google Scholar
1c 10.1016/S0010-8545(99)00230-1, F. Paul. Coord. Chem. Rev.203, 269 (2000).Search in Google Scholar
1d 10.1023/B:CATL.0000034285.05419.7e, R. Srivastava, M. D. Manju, D. Srinivas, P. Ratnasamy. Catal. Lett.97, 41 (2004).Search in Google Scholar
2 10.2174/157017907781369298, D. Chaturvedi, N. Mishra, V. Mishra. Curr. Org. Syn.4, 308 (2007).Search in Google Scholar
3 Ullmann’s Encyclopedia of Industrial Chemistry, 6th ed., electronic version, Wiley-VCH (2000).Search in Google Scholar
4a 10.1039/b009575n, F. Shi, Y. Deng. Chem. Commun. 443 (2001).Search in Google Scholar
4b 10.1016/S1381-1169(02)00550-2, B. Chen, S. S. C. Chuang. J. Mol. Catal., A: Chem.195, 37 (2003).Search in Google Scholar
4c 10.1006/jcat.2001.3350, F. Shi, Y. Deng, T. Sima, H. Yang. J. Catal.203, 525 (2001).Search in Google Scholar
4d 10.1039/c39920001467, F. Ragaini, S. Cenini, F. Demartin. J. Chem. Soc., Chem. Commun. 1467 (1992).Search in Google Scholar
5 10.1016/j.jcat.2007.11.004, M. Distaso, E. Quaranta. J. Catal.253, 278 (2008).Search in Google Scholar
6 10.1039/b700658f, M. Aresta, A. Dibenedetto. Dalton Trans.28, 2975 (2007).Search in Google Scholar PubMed
7 10.1021/jo001140u, R. Salvatore, S. Shin, A. Nagle, K. Jung. J. Org. Chem.66, 1035 (2001).Search in Google Scholar PubMed
8 10.1039/b106201h, M. Abla, J. Choi, T. Sakakura. Chem. Commun.21, 2238 (2001).Search in Google Scholar PubMed
9 10.1039/b711197e, A. Ion, C. V. Doorslaer, V. Parvulescu, P. Jacobs, D. D. Vos. Green Chem.10, 111 (2008).Search in Google Scholar
10 S. N. Mantrov, A. A. Orlova, A. L. Chimishkyan. Russ. RU 2359958 C2 20090627 (2009).Search in Google Scholar
11 10.1002/anie.200351098, F. Shi, Y. Deng, T. Sima, J. Peng, Y. Gu, B. Qiao. Angew. Chem., Int. Ed.42, 3257 (2003).Search in Google Scholar PubMed
12 10.1006/jcat.1994.1285, C. B. Khouw, C. B. Dartt, J. A. Labinger, M. E. Davis. J. Catal.149, 195 (1994).Search in Google Scholar
13 10.1007/BF00806570, S. Klein, J. A. Martens, R. Parton, K. Vercruysse, P. Jacobs, W. F. Maier. Catal. Lett.38, 209 (1996).Search in Google Scholar
14 10.1006/jcat.1999.2495, W. Kim, J. S. Lee. J. Catal.185, 307 (1999).Search in Google Scholar
15 10.1016/j.jcat.2006.12.015, B. Bonelli, M. Cozzolino, R. Tesser, M. Di Serio, M. Piumetti, E. Garrone, E. Santacesaria. J. Catal.246, 293 (2007).Search in Google Scholar
16 10.1007/BF00772604, H. Kanai, H. Kobayashi. Catal. Lett.20, 125 (1993).Search in Google Scholar
17 10.1021/jp902200c, J. Lu, K. M. Kosuda, R. P. Van Duyne, P. C. Stair. J. Phys. Chem. C113, 12412 (2009).Search in Google Scholar
18 E. Santacesaria, M. Cozzolino, M. Di Serio, A. M. Venezia, R. Tesser. Appl. Catal., A270, 177 (2004).10.1016/j.apcata.2004.05.003Search in Google Scholar
19 10.1016/j.molcata.2003.12.020, S. Wang, X. Ma, H. Guo, J. Gong, X. Yang, G. Xu. J. Mol. Catal., A: Chem.214, 273 (2004).Search in Google Scholar
20 10.1021/ja01864a025, S. Brunauer, L. Deming, W. E. Deming, E. Teller. J. Am. Chem. Soc.62, 1723 (1940).Search in Google Scholar
21 10.1021/jp710283p, G. Tian, H. Fu, L. Jing, B. Xin, K. Pan. J. Phys. Chem. C112, 3083 (2008).Search in Google Scholar
22 10.1351/pac200577101719, P. Tundo, S. Bressanello, A. Loris, G. Sathicq. Pure Appl. Chem.77, 1719 (2005).Search in Google Scholar
© 2013 Walter de Gruyter GmbH, Berlin/Boston