Ordered periodic mesoporous benzene-silicas (Ph-PMOs) functionalized with organotin were synthesized by co-condensing (MeO)2ClSi(CH2)3SnCl3, tetraethyl orthosilicate (TEOS), and 1,4-bis(triethoxysilyl)-benzene in a Pluronic 123 acid solution. The diffraction lines for (100), (110), and (200) facets observed in their X-ray diffraction (XRD) patterns and parallel channels in their transmission electron microscopy (TEM) images show that the samples have highly ordered hexagonal array structure. The presence of bands characteristic for phenyl groups, tetrahedral and octahedral Sn species, and Qn and Tn species in their Fourier transform/infrared (FT/IR), diffuse reflectance UV–vis, and NMR spectra gives convincing evidence for the incorporation of phenyl groups and (MeO)2ClSi(CH2)3SnCl3 into the framework or silica wall. The organotin-functionalized Ph-PMOs exhibit much higher catalytic activity than organotin-functionalized mesoporous silica lacking phenyl groups in the framework, for direct synthesis of dimethyl carbonate (DMC) from methanol and CO2, although both have high catalytic stability. This may be attributed to its enhanced surface hydro-phobicity and the presence of a large number of hexa-coordinated Sn species and tiny Sn oxide clusters in the former sample. The DMC yield obtained over the prepared organotin-functionalized Ph-PMOs increases monotonically with increasing CO2 pressure. The material also exhibits high catalytic stability upon reusage.
References
1 10.1021/ar040164a, B. Hatton, K. Landskron, W. Whitnall, D. Perovic, G. A. Ozin. Acc. Chem. Res.38, 305 (2005).Search in Google Scholar
2 10.1002/anie.200301751, G. Kickelbick. Angew. Chem., Int. Ed.43, 3102 (2004).Search in Google Scholar
3 10.1039/b504511h, W. J. Hunks, G. A. Ozin. J. Mater. Chem.15, 3716 (2005).Search in Google Scholar
4 10.1002/(SICI)1521-3773(20000515)39:10<1808::AID-ANIE1808>3.0.CO;2-G, T. Asefa, M. J. MacLachlan, H. Grondey, N. Combs, G. A. Ozin. Angew. Chem., Int. Ed.39, 1808 (2000).Search in Google Scholar
5 10.1016/j.micromeso.2006.04.012, S. Shylesh, R. K. Jha, A. P. Singh. Microporous Mesoporous Mater.94, 364 (2006).Search in Google Scholar
6 10.1016/j.micromeso.2007.03.005, B. A. Treuherz, Y. Z. Khimyak. Microporous Mesoporous Mater.106, 236 (2007).Search in Google Scholar
7 10.1038/416304a, S. Inagaki, S. Guan, T. Ohsuna, O. Tersaki. Nature416, 304 (2002).Search in Google Scholar
8 10.1021/cm048986p, W. J. Hunks, G. A. Ozin. Chem. Mater.16, 5465 (2004).Search in Google Scholar
9 10.1021/ja0290678, M. P. Kapoor, Q. H. Yang, S. Inagaki. J. Am. Chem. Soc.124, 15176 (2002).Search in Google Scholar
10 10.1002/adfm.200701252, A. Kuschel, S. Polarz. Adv. Funct. Mater.18, 1272 (2008).Search in Google Scholar
11 10.1002/anie.200301751, G. Kickelbick. Angew. Chem., Int. Ed.43, 3102 (2004).Search in Google Scholar
12 10.1039/b815012e, Q. H. Yang, J. Liu, L. Zhang, C. Li. J. Mater. Chem.19, 1945 (2009).Search in Google Scholar
13 10.1016/j.micromeso.2006.09.029, S. Shylesh, Ch. Srilakshmi, A. P. Singh, B. G. Anderson. Microporous Mesoporous Mater.99, 334 (2007).Search in Google Scholar
14 10.1016/j.micromeso.2006.03.027, S. Shylesh, A. P. Singh. Microporous Mesoporous Mater.94, 127 (2006).Search in Google Scholar
15 10.1021/jp062355w, M. Morishita, Y. Shiraishi, T. Hirai. J. Phys. Chem. B110, 127 (2006).Search in Google Scholar
16 10.1016/j.jcat.2004.09.007, Q. H. Yang, J. Liu, J. Yang, M. P. Kpoor, S. Inagaki, C. Li. J. Catal.228, 265 (2004).Search in Google Scholar
17 10.1016/j.micromeso.2007.03.030, D. Coutinho, C. R. Xiong, K. J. Balkus Jr. Microporous Mesoporous Mater.108, 86 (2008).Search in Google Scholar
18 10.1021/cm0613307, D. M. Jiang, J. S. Gao, J. Yang, W. G. Su, Q. H. Yang, C. Li. Chem. Mater.18, 6012 (2006).Search in Google Scholar
19 10.1021/cr950067i, A. A. Shaikh, S. Sivaram. Chem. Rev.96, 951 (1996).Search in Google Scholar
20 Y. Ono. Appl. Catal. A155, 133 (1997).10.1016/S0926-860X(96)00402-4Search in Google Scholar
21 10.1351/pac199668020367, Y. Ono. Pure Appl. Chem.68, 367 (1996).Search in Google Scholar
22 10.1135/cccc19950687, J. Kizlink, I. Pastucha. Collect. Czech. Chem. Commun.60, 687 (1995).Search in Google Scholar
23 10.1002/aoc.774, J. M. Batt. Appl. Organometal. Chem.19, 458 (2005).Search in Google Scholar
24 10.1007/s10562-007-9337-9, B. B. Fan, J. L. Zhang, W. B. Fan, R. F. Li. Catal. Lett.121, 297 (2008).Search in Google Scholar
25 10.1021/jp0509109, J. Liu, Q. H. Yang, M. P. Kapoor, N. Steoyama, S. Inagaki, J. Yang, L. Zhang. J. Phys. Chem. B109, 12250 (2005).Search in Google Scholar PubMed
26 10.1006/jcat.1999.2394, K. Chaudhari, T. K. Das, P. R. Rajmohanan, K. Lazar, S. Sivasanker, A. J. Chandwadkar. J. Catal.183, 281 (1999).Search in Google Scholar
27 10.1021/ja026799r, Q. H. Yang, M. P. Kapoor, S. Inagaki. J. Am. Chem. Soc.124, 9694 (2002).Search in Google Scholar PubMed
28 10.1021/cm031125g, M. J. Jia, A. Seifert, M. Berger, H. Giegengack, S. Schulze, W. R. Thiel. Chem. Mater.16, 877 (2004).Search in Google Scholar
29 B. B. Fan, H. Y. Li, W. B. Fan, J. L. Zhang, R. F. Li. Appl. Catal., A372, 94 (2010).10.1016/j.apcata.2009.10.022Search in Google Scholar
30 10.1016/j.catcom.2009.01.012, K. Almusaiteer. Catal. Commun.10, 1127 (2009).Search in Google Scholar
31 10.1016/S0277-5387(99)00411-8, T. Sakakura, J. C. Choi, Y. Satio, T. Sako. Polyhedron19, 573 (2000).Search in Google Scholar
32 10.1016/j.cattod.2006.02.025, D. Ballivet-Tkatchenko, S. Chambrey, R. Keiski, R. Ligabue, L. Plasseraud, P. Richard, H. Turunen. Catal. Today115, 80 (2006).Search in Google Scholar
© 2013 Walter de Gruyter GmbH, Berlin/Boston