Skip to content
Publicly Available Published by De Gruyter September 15, 2011

Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over organotin-functionalized mesoporous benzene-silica

  • Binbin Fan , Hongyu Li , Weibin Fan , Zhangfen Qin and Ruifeng Li

Ordered periodic mesoporous benzene-silicas (Ph-PMOs) functionalized with organotin were synthesized by co-condensing (MeO)2ClSi(CH2)3SnCl3, tetraethyl orthosilicate (TEOS), and 1,4-bis(triethoxysilyl)-benzene in a Pluronic 123 acid solution. The diffraction lines for (100), (110), and (200) facets observed in their X-ray diffraction (XRD) patterns and parallel channels in their transmission electron microscopy (TEM) images show that the samples have highly ordered hexagonal array structure. The presence of bands characteristic for phenyl groups, tetrahedral and octahedral Sn species, and Qn and Tn species in their Fourier transform/infrared (FT/IR), diffuse reflectance UV–vis, and NMR spectra gives convincing evidence for the incorporation of phenyl groups and (MeO)2ClSi(CH2)3SnCl3 into the framework or silica wall. The organotin-functionalized Ph-PMOs exhibit much higher catalytic activity than organotin-functionalized mesoporous silica lacking phenyl groups in the framework, for direct synthesis of dimethyl carbonate (DMC) from methanol and CO2, although both have high catalytic stability. This may be attributed to its enhanced surface hydro-phobicity and the presence of a large number of hexa-coordinated Sn species and tiny Sn oxide clusters in the former sample. The DMC yield obtained over the prepared organotin-functionalized Ph-PMOs increases monotonically with increasing CO2 pressure. The material also exhibits high catalytic stability upon reusage.

References

1 10.1021/ar040164a, B. Hatton, K. Landskron, W. Whitnall, D. Perovic, G. A. Ozin. Acc. Chem. Res.38, 305 (2005).Search in Google Scholar

2 10.1002/anie.200301751, G. Kickelbick. Angew. Chem., Int. Ed.43, 3102 (2004).Search in Google Scholar

3 10.1039/b504511h, W. J. Hunks, G. A. Ozin. J. Mater. Chem.15, 3716 (2005).Search in Google Scholar

4 10.1002/(SICI)1521-3773(20000515)39:10<1808::AID-ANIE1808>3.0.CO;2-G, T. Asefa, M. J. MacLachlan, H. Grondey, N. Combs, G. A. Ozin. Angew. Chem., Int. Ed.39, 1808 (2000).Search in Google Scholar

5 10.1016/j.micromeso.2006.04.012, S. Shylesh, R. K. Jha, A. P. Singh. Microporous Mesoporous Mater.94, 364 (2006).Search in Google Scholar

6 10.1016/j.micromeso.2007.03.005, B. A. Treuherz, Y. Z. Khimyak. Microporous Mesoporous Mater.106, 236 (2007).Search in Google Scholar

7 10.1038/416304a, S. Inagaki, S. Guan, T. Ohsuna, O. Tersaki. Nature416, 304 (2002).Search in Google Scholar

8 10.1021/cm048986p, W. J. Hunks, G. A. Ozin. Chem. Mater.16, 5465 (2004).Search in Google Scholar

9 10.1021/ja0290678, M. P. Kapoor, Q. H. Yang, S. Inagaki. J. Am. Chem. Soc.124, 15176 (2002).Search in Google Scholar

10 10.1002/adfm.200701252, A. Kuschel, S. Polarz. Adv. Funct. Mater.18, 1272 (2008).Search in Google Scholar

11 10.1002/anie.200301751, G. Kickelbick. Angew. Chem., Int. Ed.43, 3102 (2004).Search in Google Scholar

12 10.1039/b815012e, Q. H. Yang, J. Liu, L. Zhang, C. Li. J. Mater. Chem.19, 1945 (2009).Search in Google Scholar

13 10.1016/j.micromeso.2006.09.029, S. Shylesh, Ch. Srilakshmi, A. P. Singh, B. G. Anderson. Microporous Mesoporous Mater.99, 334 (2007).Search in Google Scholar

14 10.1016/j.micromeso.2006.03.027, S. Shylesh, A. P. Singh. Microporous Mesoporous Mater.94, 127 (2006).Search in Google Scholar

15 10.1021/jp062355w, M. Morishita, Y. Shiraishi, T. Hirai. J. Phys. Chem. B110, 127 (2006).Search in Google Scholar

16 10.1016/j.jcat.2004.09.007, Q. H. Yang, J. Liu, J. Yang, M. P. Kpoor, S. Inagaki, C. Li. J. Catal.228, 265 (2004).Search in Google Scholar

17 10.1016/j.micromeso.2007.03.030, D. Coutinho, C. R. Xiong, K. J. Balkus Jr. Microporous Mesoporous Mater.108, 86 (2008).Search in Google Scholar

18 10.1021/cm0613307, D. M. Jiang, J. S. Gao, J. Yang, W. G. Su, Q. H. Yang, C. Li. Chem. Mater.18, 6012 (2006).Search in Google Scholar

19 10.1021/cr950067i, A. A. Shaikh, S. Sivaram. Chem. Rev.96, 951 (1996).Search in Google Scholar

20 Y. Ono. Appl. Catal. A155, 133 (1997).10.1016/S0926-860X(96)00402-4Search in Google Scholar

21 10.1351/pac199668020367, Y. Ono. Pure Appl. Chem.68, 367 (1996).Search in Google Scholar

22 10.1135/cccc19950687, J. Kizlink, I. Pastucha. Collect. Czech. Chem. Commun.60, 687 (1995).Search in Google Scholar

23 10.1002/aoc.774, J. M. Batt. Appl. Organometal. Chem.19, 458 (2005).Search in Google Scholar

24 10.1007/s10562-007-9337-9, B. B. Fan, J. L. Zhang, W. B. Fan, R. F. Li. Catal. Lett.121, 297 (2008).Search in Google Scholar

25 10.1021/jp0509109, J. Liu, Q. H. Yang, M. P. Kapoor, N. Steoyama, S. Inagaki, J. Yang, L. Zhang. J. Phys. Chem. B109, 12250 (2005).Search in Google Scholar PubMed

26 10.1006/jcat.1999.2394, K. Chaudhari, T. K. Das, P. R. Rajmohanan, K. Lazar, S. Sivasanker, A. J. Chandwadkar. J. Catal.183, 281 (1999).Search in Google Scholar

27 10.1021/ja026799r, Q. H. Yang, M. P. Kapoor, S. Inagaki. J. Am. Chem. Soc.124, 9694 (2002).Search in Google Scholar PubMed

28 10.1021/cm031125g, M. J. Jia, A. Seifert, M. Berger, H. Giegengack, S. Schulze, W. R. Thiel. Chem. Mater.16, 877 (2004).Search in Google Scholar

29 B. B. Fan, H. Y. Li, W. B. Fan, J. L. Zhang, R. F. Li. Appl. Catal., A372, 94 (2010).10.1016/j.apcata.2009.10.022Search in Google Scholar

30 10.1016/j.catcom.2009.01.012, K. Almusaiteer. Catal. Commun.10, 1127 (2009).Search in Google Scholar

31 10.1016/S0277-5387(99)00411-8, T. Sakakura, J. C. Choi, Y. Satio, T. Sako. Polyhedron19, 573 (2000).Search in Google Scholar

32 10.1016/j.cattod.2006.02.025, D. Ballivet-Tkatchenko, S. Chambrey, R. Keiski, R. Ligabue, L. Plasseraud, P. Richard, H. Turunen. Catal. Today115, 80 (2006).Search in Google Scholar

Online erschienen: 2011-9-15
Erschienen im Druck: 2011-9-15

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.12.2023 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-11-06-01/html
Scroll to top button