Skip to content
Publicly Available Published by De Gruyter October 31, 2011

Aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported vanadium oxide catalysts: Structural effect and reaction mechanism

  • Junfang Nie and Haichao Liu

The structure–activity relationship and reaction mechanism for selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) in toluene were studied on vanadium oxide domains on TiO2, Al2O3, Nb2O5, ZrO2, and MgO and with a wide range of VOx surface densities. The structures of these catalysts were characterized by X-ray diffraction (XRD), diffuse reflectance UV–vis spectroscopy (UV–vis DRS), and Raman spectroscopy, and their reducibility was probed by H2-temperature programmed reduction. The structures of the VOx domains evolved from monovanadate to polyvanadate structures with increasing the VOx surface densities, and finally to crystalline V2O5 clusters at surface densities above one-monolayer capacity. Within one-monolayer capacity, higher VOx surface densities and more reducible supports led to higher reducibility and reactivity of the VOx domains. The support surfaces covered with polyvanadates and V2O5 clusters and the supports with acidity favored the formation of DFF. The correlation between the reducibility and reactivity, together with the kinetic studies, suggests that the HMF oxidation to DFF proceeds via the redox mechanism involving the V5+/V4+ redox cycles and the reoxidation of V4+ to V5+ by O2 as the rate-determining step. These results may provide guidance for the design of more efficient catalysts for the HMF oxidation to synthesize DFF.


1 10.1021/cr050989d, A. Corma, S. Iborra, A. Velty. Chem. Rev.107, 2411 (2007).Search in Google Scholar

2 10.1002/anie.200604274, J. N. Chheda, G. W. Huber, J. A. Dumesic. Angew. Chem., Int. Ed.46, 7164 (2007).Search in Google Scholar

3a 10.1021/jm980230c, K. T. Hopkins, W. D. Wilson, B. C. Bender, D. R. McCurdy, J. E. Hall, R. R. Tidwell, A. Kumar, M. Bajic, D. W. Boykin. J. Med. Chem.41, 3872 (1998).Search in Google Scholar

3b M. Del Poeta, W. A. Schell, C. C. Dykstra, S. Jones, R. R. Tidwell, A. Czarny, M. Bajic, M. Bajic, A. Kumar, D. Boykin, J. R. Perfect. Antimicrob. Agents Chemother.42, 2495 (1998).Search in Google Scholar

4a 10.1002/(SICI)1097-0126(199811)47:3<267::AID-PI9>3.0.CO;2-X, A. Gandini, N. M. Belgacem. Polym. Int.47, 267 (1998).Search in Google Scholar

4b 10.1016/j.eurpolymj.2008.11.012, A. S. Amarasekara, D. Green, L. D. Williams. Eur. Polym. J.45, 595 (2009).Search in Google Scholar

5 10.1016/j.catcom.2007.06.021, A. S. Amarasekara, D. Green, E. McMillan. Catal. Commun.9, 286 (2008).Search in Google Scholar

6 10.1021/ar010071i, F. W. Lichtenthaler. Acc. Chem. Res.35, 728 (2002).Search in Google Scholar

7 J. Lewkowski. Arkivoc1, 17 (2001).10.3998/ark.5550190.0002.102Search in Google Scholar

8a 10.1002/cssc.201000273, J. Ma, Z. Du, J. Xu, Q. Chu, Y. Pang. ChemSusChem4, 51 (2011).Search in Google Scholar

8b 10.1007/s11244-008-9153-5, O. C. Navarro, A. C. Canos, S. I. Chornet. Top. Catal.52, 304 (2009).Search in Google Scholar

8c C. Carlini, P. Patrono, A. M. R. Galletti, G. Sbrana, V. Zima. Appl. Catal., A289, 197 (2005).10.1016/j.apcata.2005.05.006Search in Google Scholar

8d 10.1016/S0167-2991(97)80930-5, C. Moreau, R. Durand, C. Pourcheron, D. Tichit. Stud. Surf. Sci. Catal.108, 399 (1997).Search in Google Scholar

9a 10.1016/S0360-0564(08)60655-0, H. H. Kung. Adv. Catal.40, 1 (1994).Search in Google Scholar

9b 10.1006/jcat.1998.2143, A. Khodakov, J. Yang, S. Su, E. Iglesia, A. T. Bell. J. Catal.177, 343 (1998).Search in Google Scholar

9c 10.1021/jp055767y, H. Tian, E. I. Ross, I. E. Wachs. J. Phys. Chem. B110, 9593 (2006).Search in Google Scholar

10 10.1016/S0920-5861(02)00323-1, B. M. Weckhuysen, D. E. Keller. Catal. Today78, 25 (2003).Search in Google Scholar

11 10.1016/0021-9517(92)90337-H, G. T. Went, L.-J. Leu, R. R. Rosin, A. T. Bell. J. Catal.134, 492 (1992).Search in Google Scholar

12a 10.1016/0920-5861(95)00203-0, I. E. Wachs. Catal. Today27, 437 (1996).Search in Google Scholar

12b J.-M. Jehng, G. Deo, B. M. Weckhuysen, I. E. Wachs. J. Mol. Catal., A110, 41 (1996).10.1016/1381-1169(96)00061-1Search in Google Scholar

12c 10.1021/jp8078056, B. Kilos, A. T. Bell, E. Iglesia. J. Phys. Chem. C113, 2830 (2009).Search in Google Scholar

13 10.1039/ft9938903151, A. Ouqour, G. Coudurier, J. C. Vedrine. J. Chem. Soc., Faraday Trans.89, 3151 (1993).Search in Google Scholar

14 10.1021/la800370r, W. Li, H. Huang, H. Li, W. Zhang, H. Liu. Langmuir24, 8358 (2008).Search in Google Scholar

15 10.1016/S1872-1508(06)60033-8, H. Guan, P. Wang, H. Wang, B. Zhao, Y. Zhu, Y. Xie. Acta Phys. Chim. Sin.22, 804 (2006).Search in Google Scholar

16 10.1016/j.jcat.2006.01.019, I. Giakoumelou, C. Fountzoula, C. Kordulis, S. Boghosian. J. Catal.239, 1 (2006).Search in Google Scholar

17a 10.1006/jcat.2002.3620, K. Chen, A. T. Bell, E. Iglesia. J. Catal.209, 35 (2002).Search in Google Scholar

17b 10.1006/jcat.2000.3125, K. Chen, S. Xie, A. T. Bell, E. Iglesia. J. Catal.198, 232 (2001).Search in Google Scholar

18a H. Liu, P. Cheung, E. Iglesia. J. Catal.217, 222 (2003).Search in Google Scholar

18b 10.1021/jp0401980, H. Liu, E. Iglesia. J. Phys. Chem. B109, 2155 (2005).Search in Google Scholar PubMed

Online erschienen: 2011-10-31
Erschienen im Druck: 2011-10-31

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2023 from
Scroll to top button