The structure–activity relationship and reaction mechanism for selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) in toluene were studied on vanadium oxide domains on TiO2, Al2O3, Nb2O5, ZrO2, and MgO and with a wide range of VOx surface densities. The structures of these catalysts were characterized by X-ray diffraction (XRD), diffuse reflectance UV–vis spectroscopy (UV–vis DRS), and Raman spectroscopy, and their reducibility was probed by H2-temperature programmed reduction. The structures of the VOx domains evolved from monovanadate to polyvanadate structures with increasing the VOx surface densities, and finally to crystalline V2O5 clusters at surface densities above one-monolayer capacity. Within one-monolayer capacity, higher VOx surface densities and more reducible supports led to higher reducibility and reactivity of the VOx domains. The support surfaces covered with polyvanadates and V2O5 clusters and the supports with acidity favored the formation of DFF. The correlation between the reducibility and reactivity, together with the kinetic studies, suggests that the HMF oxidation to DFF proceeds via the redox mechanism involving the V5+/V4+ redox cycles and the reoxidation of V4+ to V5+ by O2 as the rate-determining step. These results may provide guidance for the design of more efficient catalysts for the HMF oxidation to synthesize DFF.
References
1 10.1021/cr050989d, A. Corma, S. Iborra, A. Velty. Chem. Rev.107, 2411 (2007).Search in Google Scholar
2 10.1002/anie.200604274, J. N. Chheda, G. W. Huber, J. A. Dumesic. Angew. Chem., Int. Ed.46, 7164 (2007).Search in Google Scholar
3a 10.1021/jm980230c, K. T. Hopkins, W. D. Wilson, B. C. Bender, D. R. McCurdy, J. E. Hall, R. R. Tidwell, A. Kumar, M. Bajic, D. W. Boykin. J. Med. Chem.41, 3872 (1998).Search in Google Scholar
3b M. Del Poeta, W. A. Schell, C. C. Dykstra, S. Jones, R. R. Tidwell, A. Czarny, M. Bajic, M. Bajic, A. Kumar, D. Boykin, J. R. Perfect. Antimicrob. Agents Chemother.42, 2495 (1998).Search in Google Scholar
4a 10.1002/(SICI)1097-0126(199811)47:3<267::AID-PI9>3.0.CO;2-X, A. Gandini, N. M. Belgacem. Polym. Int.47, 267 (1998).Search in Google Scholar
4b 10.1016/j.eurpolymj.2008.11.012, A. S. Amarasekara, D. Green, L. D. Williams. Eur. Polym. J.45, 595 (2009).Search in Google Scholar
5 10.1016/j.catcom.2007.06.021, A. S. Amarasekara, D. Green, E. McMillan. Catal. Commun.9, 286 (2008).Search in Google Scholar
6 10.1021/ar010071i, F. W. Lichtenthaler. Acc. Chem. Res.35, 728 (2002).Search in Google Scholar
7 J. Lewkowski. Arkivoc1, 17 (2001).10.3998/ark.5550190.0002.102Search in Google Scholar
8a 10.1002/cssc.201000273, J. Ma, Z. Du, J. Xu, Q. Chu, Y. Pang. ChemSusChem4, 51 (2011).Search in Google Scholar
8b 10.1007/s11244-008-9153-5, O. C. Navarro, A. C. Canos, S. I. Chornet. Top. Catal.52, 304 (2009).Search in Google Scholar
8c C. Carlini, P. Patrono, A. M. R. Galletti, G. Sbrana, V. Zima. Appl. Catal., A289, 197 (2005).10.1016/j.apcata.2005.05.006Search in Google Scholar
8d 10.1016/S0167-2991(97)80930-5, C. Moreau, R. Durand, C. Pourcheron, D. Tichit. Stud. Surf. Sci. Catal.108, 399 (1997).Search in Google Scholar
9a 10.1016/S0360-0564(08)60655-0, H. H. Kung. Adv. Catal.40, 1 (1994).Search in Google Scholar
9b 10.1006/jcat.1998.2143, A. Khodakov, J. Yang, S. Su, E. Iglesia, A. T. Bell. J. Catal.177, 343 (1998).Search in Google Scholar
9c 10.1021/jp055767y, H. Tian, E. I. Ross, I. E. Wachs. J. Phys. Chem. B110, 9593 (2006).Search in Google Scholar
10 10.1016/S0920-5861(02)00323-1, B. M. Weckhuysen, D. E. Keller. Catal. Today78, 25 (2003).Search in Google Scholar
11 10.1016/0021-9517(92)90337-H, G. T. Went, L.-J. Leu, R. R. Rosin, A. T. Bell. J. Catal.134, 492 (1992).Search in Google Scholar
12a 10.1016/0920-5861(95)00203-0, I. E. Wachs. Catal. Today27, 437 (1996).Search in Google Scholar
12b J.-M. Jehng, G. Deo, B. M. Weckhuysen, I. E. Wachs. J. Mol. Catal., A110, 41 (1996).10.1016/1381-1169(96)00061-1Search in Google Scholar
12c 10.1021/jp8078056, B. Kilos, A. T. Bell, E. Iglesia. J. Phys. Chem. C113, 2830 (2009).Search in Google Scholar
13 10.1039/ft9938903151, A. Ouqour, G. Coudurier, J. C. Vedrine. J. Chem. Soc., Faraday Trans.89, 3151 (1993).Search in Google Scholar
14 10.1021/la800370r, W. Li, H. Huang, H. Li, W. Zhang, H. Liu. Langmuir24, 8358 (2008).Search in Google Scholar
15 10.1016/S1872-1508(06)60033-8, H. Guan, P. Wang, H. Wang, B. Zhao, Y. Zhu, Y. Xie. Acta Phys. Chim. Sin.22, 804 (2006).Search in Google Scholar
16 10.1016/j.jcat.2006.01.019, I. Giakoumelou, C. Fountzoula, C. Kordulis, S. Boghosian. J. Catal.239, 1 (2006).Search in Google Scholar
17a 10.1006/jcat.2002.3620, K. Chen, A. T. Bell, E. Iglesia. J. Catal.209, 35 (2002).Search in Google Scholar
17b 10.1006/jcat.2000.3125, K. Chen, S. Xie, A. T. Bell, E. Iglesia. J. Catal.198, 232 (2001).Search in Google Scholar
18a H. Liu, P. Cheung, E. Iglesia. J. Catal.217, 222 (2003).Search in Google Scholar
18b 10.1021/jp0401980, H. Liu, E. Iglesia. J. Phys. Chem. B109, 2155 (2005).Search in Google Scholar PubMed
© 2013 Walter de Gruyter GmbH, Berlin/Boston