Skip to content
Publicly Available Published by De Gruyter July 30, 2012

Balancing life with glycoconjugates: Monitoring unfolded protein response-mediated anti-angiogenic action of tunicamycin by Raman spectroscopy

  • Maria O. Longas , Ashok Kotapati , Kilari PVRK Prasad , Aditi Banerjee , Jesus Santiago , Krishna Baksi and Dipak K. Banerjee

Asparagine-linked protein glycosylation is a hallmark for glycoprotein structure and function. Its impairment by tunicamycin [a competitive inhibitor of N-acetylglucos-aminyl 1-phosphate transferase (GPT)] has been known to inhibit neo-vascularization (i.e., angiogenesis) in humanized breast tumor due to an induction of endoplasmic reticulum (ER) stress-mediated unfolded protein response (UPR). The studies presented here demonstrate that (i) tunicamycin inhibits capillary endothelial cell proliferation in a dose-dependent manner; (ii) treated cells are incapable of forming colonies upon its withdrawal; and (iii) tunicamycin treatment causes nuclear fragmentation. Tunicamycin-induced ER stress-mediated UPR event in these cells was studied with the aid of Raman spectroscopy, in particular, the interpretation of bands at 1672, 1684, and 1694 cm–1, which are characteristics of proteins and originate from C=O stretching vibrations of mono-substituted amides. In tunicamycin-treated cells, these bands decreased in area as follows: at 1672 cm–1 by 41.85 % at 3 h and 55.39 % at 12 h; at 1684 cm–1 by 20.63 % at 3 h and 40.08 % at 12 h; and also at 1994 cm–1 by 33.33 % at 3 h and 32.92 % at 12 h, respectively. Thus, in the presence of tunicamycin, newly synthesized protein chains fail to arrange properly into their final secondary and/or tertiary structures, and the random coils they form had undergone further degradation.


IUPAC Congress, IUPAC Congress, CONGRESS, IUPAC Congress, 43rd, San Juan, Puerto Rico, 2011-07-30–2011-08-07


1 10.1093/glycob/12.4.43R, R. G. Spiro. Glycobiology12, 43R (2002).Search in Google Scholar

2 M. E. Taylor, K. Drickamer. Introduction to Glycobiology, Oxford University Press, Oxford (2003).Search in Google Scholar

3 10.1021/bi9517704, C. Wang, M. Eufemi, C. Turano, A. Giartosio. Biochemistry35, 7299 (1996).Search in Google Scholar

4 10.1021/ja0496266, C. J. Bosques, S. M. Tschampel, R. J. Woods, B. Imperiali. J. Am. Chem. Soc.126, 8421 (2004).Search in Google Scholar

5 10.1146/annurev.biochem.73.011303.073752, A. Helenius, M. Abei. Annu. Rev. Biochem.73, 1019 (2004).Search in Google Scholar

6 10.1016/0959-440X(95)80054-9, K. A. Karlsson. Curr. Opin. Struct. Biol.5, 622 (1995).Search in Google Scholar

7 10.1002/eji.200324037, D. M. Underhill. Eur. J. Immunol.33, 1767 (2003).Search in Google Scholar

8 M. Colmenares, A. L. Corbi, S. J. Turco, L. Rivas. J. Immunol.172, 1186 (2004).Search in Google Scholar

9 10.1126/science.1094823, A. E. Smith, A. Helenius. Science304, 237 (2004).Search in Google Scholar

10 10.1016/j.tibs.2010.04.005, C. Slawson, R. J. Copeland, G. W. Hart. Trends Biochem. Sci.35, 547 (2010).Search in Google Scholar

11 10.1016/S0959-440X(02)00375-5, P. R. Crocker. Curr. Opin. Struct. Biol.12, 609 (2002).Search in Google Scholar

12 10.1146/annurev.biochem.71.110601.135458, J. D. Esko, S. B. Selleck. Annu. Rev. Biochem.71, 435 (2002).Search in Google Scholar PubMed

13 10.1034/j.1600-065X.2002.18603.x, J. B. Lowe. Immunol. Rev.186, 19 (2002).Search in Google Scholar

14 G. A. Rabinovich, L. G. Baum, N. Tinari, R. Paganelli, C. Natoli, F. T. Liu, S. Iacobelli. J. Immunol.151, 4764 (2002).Search in Google Scholar

15 10.1126/science.7123258, D. K. Banerjee. Science218, 569 (1982).Search in Google Scholar

16 10.1186/bcr2577, A. Cazet, S. Julien, M. Bobowski, J. Burchell, P. Delannoy. Breast Cancer Res.12, 204 (2010).Search in Google Scholar

17 S. Hakomori. Cancer Res.56, 5309 (1996).Search in Google Scholar

18 10.1093/glycob/3.4.291, T. Muramatsu. Glycobiology3, 291 (1993).Search in Google Scholar

19 10.1158/0008-5472.CAN-09-2893, H. H. Wandall, O. Blixt, M. A. Tarp, J. W. Pedersen, E. P. Bennett, U. Mandel, G. Ragupathi, P. O. Livingston, M. A. Hollingsworth, J. Taylor-Papadimitriou, J. Burchell, H. Clausen. Cancer Res.70, 1306 (2010).Search in Google Scholar

20 N. Taniguchi, K. Honke, M. Fukuda. Handbook of Glycosyltransferases and their Related Genes, Springer, Tokyo (2002).Search in Google Scholar

21 10.1146/annurev.cellbio.21.122303.120200, S. Bernales, F. R. Papa, P. Walter. Annu. Rev. Cell Dev. Biol.22, 487 (2006).Search in Google Scholar

22 10.1146/annurev.biochem.73.011303.074134, M. Schroder, R. J. Kaufman. Annu. Rev. Biochem.74, 739 (2005).Search in Google Scholar

23 10.1016/0014-4827(92)90371-E, T. Tiganis, D. D. Leaver, K. Ham, A. Friedhuber, P. Stuart, M. Dziadek. Exp. Cell Res.198, 191 (1992).Search in Google Scholar

24 D. K. Banerjee, J. A. Martinez, K. Baksi. In Angiogenesis: Basic Science and Clinical Applications, M. E. Maragoudakis, E. Papadimitrou (Eds.), pp. 281–302, Transworld Research Network, Trivandrum, Kerala, India (2007).Search in Google Scholar

25 M. Nguyen, J. Folkman, J. Bischoff. J. Biol. Chem.267, 26157 (1992).Search in Google Scholar

26 10.1038/365267a0, M. Nguyen, N. A. Strubel, J. Bischoff. Nature365, 267 (1993).Search in Google Scholar PubMed

27 R. Pili, J. Chang, R. A. Partis, R. A. Mueller, F. J. Chrest, A. Passaniti. Cancer Res.55, 2920 (1995).Search in Google Scholar

28 10.1074/jbc.M110.169771, A. Banerjee, J. Y. Lang, M.-C. Hung, K. Sengupta, S. K. Banerjee, K. Baksi, D. K. Banerjee. J. Biol. Chem.286, 29127 (2011).Search in Google Scholar PubMed PubMed Central

29 E. A. Carter, H. G. M. Edwards. “Biological applications of Raman spectroscopy”, in: Infrared and Raman Spectroscopy of Biological Materials, H.-U. Gremlich, Y. Bing (Eds.), pp. 421–475, Marcel Dekker (2001).Search in Google Scholar

30 M. D. Keller, E. M. Kanter, A. Mahadevan-Jansen. Spectroscopy21, 1133 (2006).Search in Google Scholar

31 10.1002/bip.20063, S. Verrier, I. Notingher, J. M. Polak, L. L. Hench. Biopolymers74, 157 (2004).Search in Google Scholar PubMed

32 10.1006/abio.1999.4034, S. U. Sane, S. M. Cramer, T. M. Przybycien. Anal. Biochem.269, 255 (1999).Search in Google Scholar PubMed

33 10.1073/pnas.82.14.4702, D. K. Banerjee, R. L. Ornberg, M. B. H. Youdim, E. Heldman, H. B. Pollard. Proc. Natl. Acad. Sci. USA82, 4702 (1985).Search in Google Scholar PubMed PubMed Central

34 J. A. Martinez, I. Torres-Negron, L. A. Amigo, D. K. Banerjee. Cell Mol. Biol.45, 137 (1999).Search in Google Scholar

35 10.1007/s10719-006-7926-2, J. A. Martinez, J. J. Tavarez, C. M. Oliveira, D. K. Banerjee. Glycoconjugate J.23, 209 (2006).Search in Google Scholar PubMed

36 10.1242/jcs.023911, C. Wang, G. L. Zhou, S. Vedantam, P. Li, J. Field. J. Cell Sci.121, 2913 (2008).Search in Google Scholar PubMed PubMed Central

37 R. K. Vartanian, N. Weidner. Am. J. Pathol.144, 1188 (1994).Search in Google Scholar

38 D. K. Banerjee, M. Vendrell-Ramos. Ind. J. Biochem. Biophys.30, 389 (1993).Search in Google Scholar

39 10.1002/jcp.1041440314, C. M. Oliveira, D. K. Banerjee. J. Cell Physiol.144, 467 (1990).Search in Google Scholar PubMed

40 10.1007/BF00928365, S. K. Das, S. Mukherjee, D. K. Banerjee. Mol. Cell Biochem.140, 49 (1994).Search in Google Scholar PubMed

41 10.1007/978-1-4419-7877-6_24, D. K. Banerjee, C. M. Oliveira, J. J. Tavarez, V. N. Katiyar, S. Saha, J. A. Martinez, A. Banerjee, A. Sanchez, K. Baksi. Adv. Exp. Med. Biol.705, 453 (2011).Search in Google Scholar PubMed PubMed Central

42 10.1146/, R. Kornfeld, S. Kornfeld. Annu. Rev. Biochem.54, 631 (1985).Search in Google Scholar PubMed

43 10.1074/jbc.R400008200, K. Zhang, R. J. Kaufman. J. Biol. Chem.279, 25935 (2004).Search in Google Scholar PubMed

44 10.1073/pnas.96.15.8505, J. W. Brewer, L. M. Hendershot, C. J. Sherr, J. A. Diehl. Proc. Natl. Acad. Sci. USA96, 8505 (1999).Search in Google Scholar PubMed PubMed Central

Online erschienen: 2012-7-30
Erschienen im Druck: 2012-7-31

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2023 from
Scroll to top button