Asparagine-linked protein glycosylation is a hallmark for glycoprotein structure and function. Its impairment by tunicamycin [a competitive inhibitor of N-acetylglucos-aminyl 1-phosphate transferase (GPT)] has been known to inhibit neo-vascularization (i.e., angiogenesis) in humanized breast tumor due to an induction of endoplasmic reticulum (ER) stress-mediated unfolded protein response (UPR). The studies presented here demonstrate that (i) tunicamycin inhibits capillary endothelial cell proliferation in a dose-dependent manner; (ii) treated cells are incapable of forming colonies upon its withdrawal; and (iii) tunicamycin treatment causes nuclear fragmentation. Tunicamycin-induced ER stress-mediated UPR event in these cells was studied with the aid of Raman spectroscopy, in particular, the interpretation of bands at 1672, 1684, and 1694 cm–1, which are characteristics of proteins and originate from C=O stretching vibrations of mono-substituted amides. In tunicamycin-treated cells, these bands decreased in area as follows: at 1672 cm–1 by 41.85 % at 3 h and 55.39 % at 12 h; at 1684 cm–1 by 20.63 % at 3 h and 40.08 % at 12 h; and also at 1994 cm–1 by 33.33 % at 3 h and 32.92 % at 12 h, respectively. Thus, in the presence of tunicamycin, newly synthesized protein chains fail to arrange properly into their final secondary and/or tertiary structures, and the random coils they form had undergone further degradation.
Conference
IUPAC Congress, IUPAC Congress, CONGRESS, IUPAC Congress, 43rd, San Juan, Puerto Rico, 2011-07-30–2011-08-07
References
1 10.1093/glycob/12.4.43R, R. G. Spiro. Glycobiology12, 43R (2002).Search in Google Scholar
2 M. E. Taylor, K. Drickamer. Introduction to Glycobiology, Oxford University Press, Oxford (2003).Search in Google Scholar
3 10.1021/bi9517704, C. Wang, M. Eufemi, C. Turano, A. Giartosio. Biochemistry35, 7299 (1996).Search in Google Scholar
4 10.1021/ja0496266, C. J. Bosques, S. M. Tschampel, R. J. Woods, B. Imperiali. J. Am. Chem. Soc.126, 8421 (2004).Search in Google Scholar
5 10.1146/annurev.biochem.73.011303.073752, A. Helenius, M. Abei. Annu. Rev. Biochem.73, 1019 (2004).Search in Google Scholar
6 10.1016/0959-440X(95)80054-9, K. A. Karlsson. Curr. Opin. Struct. Biol.5, 622 (1995).Search in Google Scholar
7 10.1002/eji.200324037, D. M. Underhill. Eur. J. Immunol.33, 1767 (2003).Search in Google Scholar
8 M. Colmenares, A. L. Corbi, S. J. Turco, L. Rivas. J. Immunol.172, 1186 (2004).Search in Google Scholar
9 10.1126/science.1094823, A. E. Smith, A. Helenius. Science304, 237 (2004).Search in Google Scholar
10 10.1016/j.tibs.2010.04.005, C. Slawson, R. J. Copeland, G. W. Hart. Trends Biochem. Sci.35, 547 (2010).Search in Google Scholar
11 10.1016/S0959-440X(02)00375-5, P. R. Crocker. Curr. Opin. Struct. Biol.12, 609 (2002).Search in Google Scholar
12 10.1146/annurev.biochem.71.110601.135458, J. D. Esko, S. B. Selleck. Annu. Rev. Biochem.71, 435 (2002).Search in Google Scholar PubMed
13 10.1034/j.1600-065X.2002.18603.x, J. B. Lowe. Immunol. Rev.186, 19 (2002).Search in Google Scholar
14 G. A. Rabinovich, L. G. Baum, N. Tinari, R. Paganelli, C. Natoli, F. T. Liu, S. Iacobelli. J. Immunol.151, 4764 (2002).Search in Google Scholar
15 10.1126/science.7123258, D. K. Banerjee. Science218, 569 (1982).Search in Google Scholar
16 10.1186/bcr2577, A. Cazet, S. Julien, M. Bobowski, J. Burchell, P. Delannoy. Breast Cancer Res.12, 204 (2010).Search in Google Scholar
17 S. Hakomori. Cancer Res.56, 5309 (1996).Search in Google Scholar
18 10.1093/glycob/3.4.291, T. Muramatsu. Glycobiology3, 291 (1993).Search in Google Scholar
19 10.1158/0008-5472.CAN-09-2893, H. H. Wandall, O. Blixt, M. A. Tarp, J. W. Pedersen, E. P. Bennett, U. Mandel, G. Ragupathi, P. O. Livingston, M. A. Hollingsworth, J. Taylor-Papadimitriou, J. Burchell, H. Clausen. Cancer Res.70, 1306 (2010).Search in Google Scholar
20 N. Taniguchi, K. Honke, M. Fukuda. Handbook of Glycosyltransferases and their Related Genes, Springer, Tokyo (2002).Search in Google Scholar
21 10.1146/annurev.cellbio.21.122303.120200, S. Bernales, F. R. Papa, P. Walter. Annu. Rev. Cell Dev. Biol.22, 487 (2006).Search in Google Scholar
22 10.1146/annurev.biochem.73.011303.074134, M. Schroder, R. J. Kaufman. Annu. Rev. Biochem.74, 739 (2005).Search in Google Scholar
23 10.1016/0014-4827(92)90371-E, T. Tiganis, D. D. Leaver, K. Ham, A. Friedhuber, P. Stuart, M. Dziadek. Exp. Cell Res.198, 191 (1992).Search in Google Scholar
24 D. K. Banerjee, J. A. Martinez, K. Baksi. In Angiogenesis: Basic Science and Clinical Applications, M. E. Maragoudakis, E. Papadimitrou (Eds.), pp. 281–302, Transworld Research Network, Trivandrum, Kerala, India (2007).Search in Google Scholar
25 M. Nguyen, J. Folkman, J. Bischoff. J. Biol. Chem.267, 26157 (1992).Search in Google Scholar
26 10.1038/365267a0, M. Nguyen, N. A. Strubel, J. Bischoff. Nature365, 267 (1993).Search in Google Scholar PubMed
27 R. Pili, J. Chang, R. A. Partis, R. A. Mueller, F. J. Chrest, A. Passaniti. Cancer Res.55, 2920 (1995).Search in Google Scholar
28 10.1074/jbc.M110.169771, A. Banerjee, J. Y. Lang, M.-C. Hung, K. Sengupta, S. K. Banerjee, K. Baksi, D. K. Banerjee. J. Biol. Chem.286, 29127 (2011).Search in Google Scholar PubMed PubMed Central
29 E. A. Carter, H. G. M. Edwards. “Biological applications of Raman spectroscopy”, in: Infrared and Raman Spectroscopy of Biological Materials, H.-U. Gremlich, Y. Bing (Eds.), pp. 421–475, Marcel Dekker (2001).Search in Google Scholar
30 M. D. Keller, E. M. Kanter, A. Mahadevan-Jansen. Spectroscopy21, 1133 (2006).Search in Google Scholar
31 10.1002/bip.20063, S. Verrier, I. Notingher, J. M. Polak, L. L. Hench. Biopolymers74, 157 (2004).Search in Google Scholar PubMed
32 10.1006/abio.1999.4034, S. U. Sane, S. M. Cramer, T. M. Przybycien. Anal. Biochem.269, 255 (1999).Search in Google Scholar PubMed
33 10.1073/pnas.82.14.4702, D. K. Banerjee, R. L. Ornberg, M. B. H. Youdim, E. Heldman, H. B. Pollard. Proc. Natl. Acad. Sci. USA82, 4702 (1985).Search in Google Scholar PubMed PubMed Central
34 J. A. Martinez, I. Torres-Negron, L. A. Amigo, D. K. Banerjee. Cell Mol. Biol.45, 137 (1999).Search in Google Scholar
35 10.1007/s10719-006-7926-2, J. A. Martinez, J. J. Tavarez, C. M. Oliveira, D. K. Banerjee. Glycoconjugate J.23, 209 (2006).Search in Google Scholar PubMed
36 10.1242/jcs.023911, C. Wang, G. L. Zhou, S. Vedantam, P. Li, J. Field. J. Cell Sci.121, 2913 (2008).Search in Google Scholar PubMed PubMed Central
37 R. K. Vartanian, N. Weidner. Am. J. Pathol.144, 1188 (1994).Search in Google Scholar
38 D. K. Banerjee, M. Vendrell-Ramos. Ind. J. Biochem. Biophys.30, 389 (1993).Search in Google Scholar
39 10.1002/jcp.1041440314, C. M. Oliveira, D. K. Banerjee. J. Cell Physiol.144, 467 (1990).Search in Google Scholar PubMed
40 10.1007/BF00928365, S. K. Das, S. Mukherjee, D. K. Banerjee. Mol. Cell Biochem.140, 49 (1994).Search in Google Scholar PubMed
41 10.1007/978-1-4419-7877-6_24, D. K. Banerjee, C. M. Oliveira, J. J. Tavarez, V. N. Katiyar, S. Saha, J. A. Martinez, A. Banerjee, A. Sanchez, K. Baksi. Adv. Exp. Med. Biol.705, 453 (2011).Search in Google Scholar PubMed PubMed Central
42 10.1146/annurev.bi.54.070185.003215, R. Kornfeld, S. Kornfeld. Annu. Rev. Biochem.54, 631 (1985).Search in Google Scholar PubMed
43 10.1074/jbc.R400008200, K. Zhang, R. J. Kaufman. J. Biol. Chem.279, 25935 (2004).Search in Google Scholar PubMed
44 10.1073/pnas.96.15.8505, J. W. Brewer, L. M. Hendershot, C. J. Sherr, J. A. Diehl. Proc. Natl. Acad. Sci. USA96, 8505 (1999).Search in Google Scholar PubMed PubMed Central
© 2013 Walter de Gruyter GmbH, Berlin/Boston