Skip to content
Publicly Available Published by De Gruyter February 24, 2012

Chlorine-free synthesis: An overview

  • Pietro Tundo

Since the Industrial Revolution, chlorine has featured as an iconic molecule in process chemistry even though its production by electrolysis of sodium chloride is very energy-intensive. Owing to its high energy and reactivity, chlorine allows the manufacture of chlorinated derivatives in a very easy way: AlCl3, SnCl4, TiCl4, SiCl4, ZnCl2, PCl3, PCl5, POCl3, COCl2, etc. in turn are pillar intermediates in the production of numerous everyday goods. This kind of chloride chemistry is widely used because the energy is transferred to these intermediates, making further syntheses easy. The environmental and health constraints (toxicity and eco-toxicity, ozone layer depletion) and the growing need for energy (energy efficiency, climate change) force us to take advantage from available knowledge to develop new chemical strategies. Substitution of chlorine in end products in compounds where “chlorine is used in the making” means that we avoid electrolysis as primary energetic source; this makes chemistry “without chlorine” considerably more difficult and illustrates why it has not found favor in the past. The rationale behind this Special Topic issue is to seek useful and industrially relevant examples for alternatives to chlorine in synthesis, so as to facilitate the development of industrially relevant and implementable breakthrough technologies.


1 Chlorine industry review 2009–2010, Eurochlor magazine <>.Search in Google Scholar

2 10.1002/cssc.201100503, K.-O. Feldmann, S. Schulz, F. Klotter, J. J. Weigend. ChemSusChem4, 1805 (2011).Search in Google Scholar

3 S. Kulprathipanja. In Zeolites in Industrial Separation and Catalysis, Wiley-VCH, Weinheim (2010).10.1002/9783527629565Search in Google Scholar

4 10.1021/es0002924, N. Moreno, X. Querol, C. Ayora, C. F. Pereira, M. Janssen-Jurkovicova. Environ. Sci. Technol.35, 3526 (2001).Search in Google Scholar

5 P. C. Quimby, J. L. Birdsall, A. J. Caesar, W. J. Connick, C. D. Boyette, T. C. Caesar, D. C. Sands. Appl. No. 08/039,679 (1994).Search in Google Scholar

6a 10.1006/jcat.1999.2759, R. Ballini, F. Bigi, E. Gogni, R. Maggi, G. Sartori. J. Catal.191, 348 (2000).Search in Google Scholar

6b 10.1002/chem.200801113, R. Srivastava, N. Iwasa, S.-I. Fujita, M. Arai. Chem.—Eur. J.14, 9507 (2008).Search in Google Scholar

7a 10.1080/00397910600943865, A. Hegedüs, Z. Hell, A. Potor. Synth. Commun.36, 3625 (2006).Search in Google Scholar

7b 10.1002/anie.200500110, F. Bonino, A. Damin, S. Bordiga, M. Selva, P. Tundo, A. Zecchina. Angew. Chem., Int. Ed.44, 4774 (2005).Search in Google Scholar

7c 10.1016/j.jcat.2007.11.001, S.-S. Kim, T. J. Pinnavaia, R. Damavarapu. J. Catal.253, 289 (2008).Search in Google Scholar

7d 10.1002/anie.200904876, T. Tachikawa, S. Yamashita, T. Majima. Angew. Chem., Int. Ed.49, 432 (2010).Search in Google Scholar

8 K. Tanabe, W. F. Hölderich. Appl. Catal., A181, 399 (1999).10.1016/S0926-860X(98)00397-4Search in Google Scholar

9 10.1021/ja808292c, R. Gounder, E. Iglesia. J. Am. Chem. Soc.131, 1958 (2009).Search in Google Scholar

10a S. Ratton. Chem. Today 33 (1997).Search in Google Scholar

10b R. A. Sheldon. Science287, 1636 (2000).10.1126/science.287.5458.1636Search in Google Scholar

10c 10.1039/b418069k, R. A. Sheldon. Green Chem.7, 267 (2005).Search in Google Scholar

11a 10.1016/S1381-1169(99)00025-4, M. M. Q. Simoes, C. M. M. Conceicao, J. A. F. Gamelas, P. M. D. N. Domingues, A. M. V. Cavaleiro, J. A. S. Cavaleiro, A. J. V. Ferrer-Correia, R. W. A. Johnstone. J. Mol. Catal. A: Chem.144, 461 (1999).Search in Google Scholar

11b 10.1016/j.tetlet.2005.08.040, J. Wang, L. Yan, G. Li, X. Wang, Y. Ding, J. Suo. Tetrahedron Lett.46, 7023 (2005).Search in Google Scholar

11c 10.1016/j.catcom.2006.05.044, M. M. Heravi, V. Zadsirjan, K. Bakhtiari, H. A. Oskooie, F. F. Bamoharram. Catal. Commun.8, 315 (2007).Search in Google Scholar

11d 10.1039/b618546k, P. Nagaraju, N. Pasha, P. Sai, S. Prasad, N. Lingaiah. Green Chem.9, 1126 (2007).Search in Google Scholar

11e D. R. Park, S. Park, Y. Bang, I. Song. Appl. Catal., A373, 201 (2010).10.1016/j.apcata.2009.11.018Search in Google Scholar

11f 10.1016/j.catcom.2009.12.016, P. S. N. Rao, K. T. Venkateswara, P. S. Said Prasad, N. Lingaiah. Catal. Commun.11, 547 (2010).Search in Google Scholar

11g G. Romanelli, J. Autino, P. Vázquez, L. Pizzio, M. Blanco, C. Cáceres. Appl. Catal., A352, 208 (2009).10.1016/j.apcata.2008.10.003Search in Google Scholar

12a 10.1016/j.tet.2005.05.044, K. Kaczorowska, K. Kolarska, K. Mitka, P. Kowalski. Tetrahedron61, 8315 (2005).Search in Google Scholar

12b P. Villabrille, G. Romanelli, N. Quaranta, P. Vázquez. Appl. Catal., B96, 379 (2010).10.1016/j.apcatb.2010.02.035Search in Google Scholar

12c P. Villabrille, G. Romanelli, P. Vázquez, C. Cáceres. Appl. Catal., A334, 374 (2008).10.1016/j.apcata.2007.10.025Search in Google Scholar

13a 10.1021/ar010076f, P. Tundo, M. Selva. Acc. Chem. Res.35, 706 (2002).Search in Google Scholar PubMed

13b 10.1021/jo0520792, M. Selva, P. Tundo. J. Org. Chem.71, 1464 (2006).Search in Google Scholar PubMed

13c P. Tundo, A. Perosa, F. Zecchini. In Methods and Reagents for Green Chemistry, John Wiley (2007).10.1002/9780470124086Search in Google Scholar

13d P. Tundo, V. Esposito. In Green Chemical Reactions, p. 77, Springer (2008).Search in Google Scholar

14 Asahi Kasei Chemicals Corporation Patent, WO2007/34669 A1 (2007).Search in Google Scholar

15 10.1021/ef0500179, C. X. Lu, J.-g. Wang, W.-g. Zhang, Z. Huang. Energy Fuels19, 1879 (2005).Search in Google Scholar

16 10.1039/b406854h, J. F. Jenck, F. Agterberg, M. J. Droescherc. Green Chem.6, 544 (2004).Search in Google Scholar

17a D. Schinzer. In Selectivities in Lewis Acid Promoted Reactions, Kluwer Academic, Dordrecht (1989).10.1007/978-94-009-2464-2Search in Google Scholar

17b H. Yamamoto. In Lewis Acids in Organic Synthesis, Wiley-VCH, Weinheim (2000).10.1002/9783527618309Search in Google Scholar

18 10.1039/a901397k, T. Hudlicky, D. A. Frey, L. Koroniak, C. D. Claeboe Jr., L. E. Brammer. Green Chem.1, 57 (1999).Search in Google Scholar

19 R. A. Sheldon. Chem. Ind. (London) 12 (1997).10.1016/S0169-5347(97)82681-XSearch in Google Scholar

20 10.1126/science.1962206, B. M. Trost. Science254, 1471 (1991).Search in Google Scholar PubMed

21 C. Jimenez-Gonzalez, C. S. Ponder, Q. B. Broxterman, J. B. Manley. Org. Process Res. Develop.15, 912 (2011).Search in Google Scholar

22 10.1021/op049803n, J. Andraos. Org. Process Res. Develop.9, 149 (2005).Search in Google Scholar

23 10.1021/op050014v, J. Andraos. Org. Process Res. Develop.9, 404 (2005).Search in Google Scholar

24 J. Andraos. In The Algebra of Organic Synthesis: Green Metrics, Green Metrics, Design Strategy, Route Selection, and Optimization, CRC Press (2012).Search in Google Scholar

Online erschienen: 2012-2-24
Erschienen im Druck: 2012-2-24

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2023 from
Scroll to top button