Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Modified mesoporous materials as Pd scavengers and catalyst supports

Cathleen M. Crudden , Kevin McEleney , Stephanie L. MacQuarrie , Alexandre Blanc , Mutyala Sateesh and Jonathan D. Webb

Abstract

The use of mesoporous molecular sieves (MMSs) modified by mercaptopropyl trimethoxysilane (MPTMS) to scavenge Pd is described. The ordered mesoporous material displays excellent ability to remove Pd from organic and aqueous solutions. After only one treatment, a 500-ppm solution of PdCl2 in water can be reduced to 1 ppb. In addition, the resulting material is an effective, leach-proof catalyst for the Suzuki-Miyaura and Mizoroki-Heck reactions. Thus, the Suzuki-Miyaura reaction can be conducted in water at 80 °C with as little as 3 ppb Pd leaching. Hot filtrations and three-phase tests confirm that the catalyst acts without leaching Pd from the surface.


Conference

International Conference on Organic Synthesis (ICOS-16), International Conference on Organic Synthesis, ICOS, Organic Synthesis, 16th, Mérida, Yucatán, México, 2006-06-11–2006-06-15


References

1. doi:10.1002/adsc.200404071, C. E. Garrett, K. Prasad. Adv. Synth. Catal. 346, 889 (2004).Search in Google Scholar

2. doi:10.1002/adsc.200505473, N. T. S. Phan, M. Van Der Sluys, C. W. Jones. Adv. Synth. Catal. 348, 609 (2006).Search in Google Scholar

3. A. F. Shmidt, L. V. Mametova. Kinet. Catal. 37, 406 (1996).Search in Google Scholar

4. doi:10.1002/(SICI)1521-3765(20000303)6:5<843::AID-CHEM843>3.0.CO;2-G, F. Y. Zhao, B. M. Bhanage, M. Shirai, M. Arai. Chem. Eur. J. 6, 843 (2000).Search in Google Scholar

5. doi:10.1006/jcat.2000.2934, F. Y. Zhao, K. Murakami, M. Shirai, M. Arai. J. Catal. 194, 479 (2000).Search in Google Scholar

6. F. Y. Zhao, M. Shirai, M. Arai. J. Mol. Catal. A., Chem. 154, 39 (2000).Search in Google Scholar

7. F. Y. Zhao, M. Shirai, Y. Ikushima, M. Arai. J. Mol. Catal. A., Chem. 180, 211 (2002).Search in Google Scholar

8. doi:10.1002/anie.200353473, S. S. Prockl, W. Kleist, M. A. Gruber, K. Kohler. Angew. Chem., Int. Ed. 43, 1881 (2004).Search in Google Scholar

9. R. G. Heidenreich, E. G. E. Krauter, J. Pietsch, K. Kohler. J. Mol. Catal. A., Chem. 182, 499 (2002).Search in Google Scholar

10. doi:10.1002/1521-3765(20020201)8:3<622::AID-CHEM622>3.0.CO;2-0, K. Kohler, R. G. Heidenreich, J. G. E. Krauter, M. Pietsch. Chem. Eur. J. 8, 622 (2002).Search in Google Scholar

11. doi:10.1021/jo020296m, B. H. Lipshutz, S. Tasler, W. Chrisman, B. Spliethoff, B. Tesche. J. Org. Chem. 68, 1177 (2002).Search in Google Scholar

12. doi:10.1002/(SICI)1521-3773(20000103)39:1<165::AID-ANIE165>3.0.CO;2-B, M. T. Reetz, E. Westermann. Angew. Chem., Int. Ed. 39, 165 (2000).Search in Google Scholar

13. doi:10.1021/ol0263907, N. E. Leadbeater, M. Marco. Org. Lett. 4, 2973 (2002).Search in Google Scholar

14. doi:10.1002/anie.199518441, W. A. Herrmann, C. Brossmer, K. Ofele, C. P. Reisinger, T. Priermeier, M. Beller, H. Fischer. Angew. Chem., Int. Ed. 34, 1844 (1995).Search in Google Scholar

15. doi:10.1002/anie.199518481, M. Beller, H. Fischer, W. A. Herrmann, K. Ofele, C. Brossmer. Angew. Chem., Int. Ed. 34, 1848 (1995).Search in Google Scholar

16. doi:10.1039/b005521m, J. M. Brunel, M. H. Hirlemann, A. Heumann, G. Buono. Chem. Commun. 1869 (2000).Search in Google Scholar

17. doi:10.1021/ja051834q, C. S. Consorti, F. R. Flores, J. Dupont. J. Am. Chem. Soc. 127, 12054 (2005).Search in Google Scholar

18. doi:10.1016/j.jcat.2004.11.006, A. Corma, D. Das, H. Garcia, A. Leyva. J. Catal. 229, 322 (2005).Search in Google Scholar

19. doi:10.1021/om000699h, J. Dupont, A. S. Gruber, G. S. Fonseca, A. L. Monteiro, G. Ebeling, R. A. Burrow. Organometallics 20, 171 (2001).Search in Google Scholar

20. doi:10.1021/ol025790r, C. Rocaboy, J. A. Gladysz. Org. Lett. 4, 1993 (2002).Search in Google Scholar

21. doi:10.1039/b208545n, C. Rocaboy, J. A. Gladysz. New J. Chem. 27, 39 (2003).Search in Google Scholar

22. doi:10.1002/anie.199623591, J. Louie, J. F. Hartwig. Angew. Chem., Int. Ed. 35, 2359 (1996).Search in Google Scholar

23. doi:10.1021/om048992v, W. J. Sommer, K. Q. Yu, J. S. Sears, Y. Y. Ji, X. L. Zheng, R. J. Davis, C. D. Sherrill, C. W. Jones, M. Weck. Organometallics 24, 4351 (2005).Search in Google Scholar

24. doi:10.1016/j.jcat.2004.05.015, K. Q. Yu, W. Sommer, M. Weck, C. W. Jones. J. Catal. 226, 101 (2004).Search in Google Scholar

25. doi:10.1021/ol049430a, M. R. Eberhard. Org. Lett. 6, 2125 (2004).Search in Google Scholar

26. doi:10.1039/b417908k, D. Olsson, P. Nilsson, M. El Masnaouy, O. F. Wendt. Dalton Trans. 1924 (2005).Search in Google Scholar

27. G. P. F. van Strijdonck, M. D. K. Boele, P. C. J. Kamer, J. G. de Vries, P. W. N. M. van Leeuwen. Eur. J. Inorg. Chem. 1073 (1999).10.1002/(SICI)1099-0682(199907)1999:7<1073::AID-EJIC1073>3.0.CO;2-TSearch in Google Scholar

28. doi:10.1002/1615-4169(200210)344:9<996::AID-ADSC996>3.0.CO;2-J, A. H. M. de Vries, F. J. Parlevliet, L. Schmieder-van de Vondervoort, J. H. M. Mommers, H.J.W. Henderickx, M. A. M. Walet, J. G. de Vries. Adv. Synth. Catal. 344, 996 (2002).Search in Google Scholar

29. doi:10.1021/ol035184b, A. H. M. de Vries, J. M. C. A. Mulders, J. H. M. Mommers, H. J. W. Henderickx, J. G. de Vries. Org. Lett. 5, 3285 (2003).Search in Google Scholar

30. doi:10.1039/b506276b, J. G. de Vries. Dalton Trans. 421 (2006).Search in Google Scholar

31. J. A. Gladysz. Pure Appl. Chem. 73, 1319 (2001).10.1351/pac200173081319Search in Google Scholar

32. doi:10.1021/ja029146j, R. Akiyama, S. Kobayashi. J. Am. Chem. Soc. 125, 3412 (2003).Search in Google Scholar

33. doi:10.1021/ol052310y, H. Hagio, M. Sugiura, S. Kobayashi. Org. Lett. 8, 375 (2006).Search in Google Scholar

34. doi:10.1039/b308465e, M. D. Smith, A. F. Stepan, C. Ramarao, P. E. Brennan, S. V. Ley. Chem. Commun. 2652 (2003).Search in Google Scholar

35. doi:10.1002/adsc.200404331, S. P. Andrews, A. F. Stepan, H. Tanaka, S. V. Ley, M. D. Smith. Adv. Synth. Catal. 347, 647 (2005).Search in Google Scholar

36. doi:10.1021/ja0430954, C. M. Crudden, M. Sateesh, R. Lewis. J. Am. Chem. Soc. 127, 10045 (2005).Search in Google Scholar

37. doi:10.1126/science.279.5350.548, D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky. Science 279, 548 (1998).Search in Google Scholar

38. doi:10.1126/science.276.5314.923, X. Feng, G. E. Fryxell, L. Q. Wang, A. Y. Kim, J. Liu, K. M. Kemner. Science 276, 923 (1997).Search in Google Scholar

39. doi:10.1021/es970622t, L. Mercier, T. J. Pinnavaia. Environ. Sci. Technol. 32, 2749 (1998).Search in Google Scholar

40. Pluoronic-123 is a block co-polymer surfactant consisting of alternating blocks of ethylene oxide (EO) and propylene oxide (PO) monomers with molecular formula (EO)20(PO)70(EO)20. L.Mercier, T. J. Pinnavaia. Adv. Mater. 9, 500 (1997).Search in Google Scholar

41. doi:10.1039/b504839g, A. Walcarius, D. Mandler, J. A. Cox, M. Collinson, O. Lev. J. Mater. Chem. 15, 3663 (2005).Search in Google Scholar

42. doi:10.1021/cm0112082, A. Bibby, L. Mercier. Chem. Mater. 14, 1591 (2002).Search in Google Scholar

43. <http://www.jmcatalysts.com>.Search in Google Scholar

44. Argonaut technical bulletin #515 (2003).Search in Google Scholar

45. (a) doi:10.1246/cl.1978.13, M.Kosugi, T. Shimizu, T. Migita. Chem. Lett. 13 (1978);Search in Google Scholar

45. (b) H. Kuniasu, H. Kurosawa. Chem. Eur. J. 8, 2661 (2002);10.1002/1521-3765(20020617)8:12<2660::AID-CHEM2660>3.0.CO;2-QSearch in Google Scholar

45. (c) doi:10.1021/cr9902749, T. Kondo, T. Mitsudo. Chem. Rev. 100, 3205 (2000);Search in Google Scholar

45. (d) doi:10.1002/3527600159.ch7, H. Kuniyasu. In Catalytic Heterofunctionalization, A. Togni, H. Grutzmacher (Eds.), p. 217, Wiley-VCH, Weinheim (2001).Search in Google Scholar

46. Similar results have been obtained with the pinacol ester of phenyl boronic acid.Search in Google Scholar

47. doi:10.1021/ja00829a056, J. Rebek, F. Gavina. J. Am. Chem. Soc. 96, 7112 (1974).Search in Google Scholar

48. doi:10.1021/ja00835a057, J. Rebek, D. Brown, S. Zimmerman. J. Am. Chem. Soc. 97, 454 (1975).Search in Google Scholar

49. doi:10.1055/s-2005-869877, M. Lysen, K. Kohler. Synlett 1671 (2005).Search in Google Scholar

50. doi:10.1021/ja016877v, I. W. Davies, L. Matty, D. L. Hughes, P. J. Reider. J. Am. Chem. Soc. 123, 10139 (2001).Search in Google Scholar

51. doi:10.1021/jo030302u, C. Baleizao, A. Corma, H. Garcia, A. Leyva. J. Org. Chem. 69, 439 (2004).Search in Google Scholar

52. doi:10.1021/jp052527+, Y. Y. Ji, S. Jain, R. J. Davis. J. Phys. Chem., B 109, 17232 (2005).Search in Google Scholar

53. doi:10.1016/j.jcat.2004.09.005, K. Shimizu, S. Koizumi, T. Hatamachi, H. Yoshida, S. Komai, T. Kodama, Y. Kitayama. J. Catal. 228, 141 (2004).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2007-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1351/pac200779020247/html
Scroll Up Arrow