Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Electron dynamics of low-pressure deposition plasma

Hirotsugu Yasuda , Loic Ledernez , Fethi Olcaytug and Gerald Urban

Abstract

When the electric field in the dark gas phase reaches the threshold value, an electron avalanche (breakdown) occurs, which causes dissociation of organic molecules, excitation of chemically reactive molecular gas, and/or ionization of atomic gas, depending on the type of gas involved. The principles that govern these electron-impact reactions are collectively described by the term "electron dynamics". The electron-impact dissociation of organic molecules is the key factor for the deposition plasma. The implications of the interfacial avalanche of the primary electrons on the deposition plasma and also other plasma processes are discussed. The system dependency of low-pressure plasma deposition processes is an extremely important factor that should be reckoned, because the electron dynamic reactions are highly dependent on every aspect of the reaction system. The secondary electron emission from the cathode is a misinterpretation of the interfacial electron avalanche of the primary electrons described in this paper.


Conference

International Symposium on Plasma Chemistry (ISPC-18), International Symposium on Plasma Chemistry, ISPC, Plasma Chemistry, 18th, Kyoto, Japan, 2007-08-26–2007-08-31


References

1. B. Chapman. Glow Discharge Processes, John Wiley, New York (1980).Search in Google Scholar

2. S. C. Brown. Introduction to Electrical Discharges in Gases, John Wiley, New York (1966).Search in Google Scholar

3. H. Yasuda. Luminous Chemical Vapor Deposition & Interface Engineering, Marcel Dekker, New York (2004).10.1201/9781420030297Search in Google Scholar

4. doi:10.1023/B:PCPP.0000013204.17559.72, H. Yasuda, Q. Yu. Plasma Chem. Plasma Process. 24, 325 (2004).Search in Google Scholar

5. doi:10.1002/pola.11038, Q. S. Yu, C. Huang, H. K. Yasuda. J. Polym. Sci., A: Polym. Chem. 42, 1042 (2004).Search in Google Scholar

6. H. Yasuda, Q. Yu. J. Vac. Sci. Technol. A 22, 472 (2004).10.1116/1.1690776Search in Google Scholar

7. doi:10.1002/ppap.200600160, H. Yasuda. Plasma Process. Polym. 4, 347 (2007).Search in Google Scholar

8. doi:10.1021/la00058a070, H. Yasuda, E. J. Charlson, E. M. Charlson, T. Yasuda, M. Miyama, T. Okuno. Langmuir 7, 2394 (1991).Search in Google Scholar

9. M. A. Hassouba, F. F. Elakshar, A. A. Garamoon. Fizika A 11, 81 (2002).Search in Google Scholar

10. Y. Hatta. Gas Discharge, Tohoku University Lecture Series of Introduction to Basic Electronics, 2nd ed., Vol. 4, Kindai Kagaku-Sha, Tokyo (1979).Search in Google Scholar

11. H. Yasuda. Plasma Polymerization, Academic Press, Orlando (1985).Search in Google Scholar

12. J. L. Vossen, J. J. Cuomo. Thin Film Processes, J. L. Vossen, W. Kern (Eds.), Academic Press, New York (1978).Search in Google Scholar

13. K. Wasa, S. Hayakawa. Handbook of Sputter Deposition Technology, Noyes Publications, Westwood, NJ (1992).Search in Google Scholar

14. doi:10.1116/1.576174, D. L. Cho, Y. S. Yeh, H. Yasuda. J. Vac. Sci. Technol., A 7, 2960 (1989).Search in Google Scholar

15. doi:10.1116/1.580089, W. H. Tao, M. A. Prelas, H. K. Yasuda. J. Vac. Sci. Technol., A 14, 2113 (1996).Search in Google Scholar

16. doi:10.1073/pnas.14.8.627, I. Langmuir. Proc. Natl. Acad. Sci. USA 14, 628 (1928).Search in Google Scholar

17. doi:10.1080/00222337608061195, H. Kobayashi, A. T. Bell, M. Shen. J. Macromol. Sci. Chem. 10, 491 (1976).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2008-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1351/pac200880091883/html
Scroll Up Arrow