Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Macroscopic control of plasma polymerization processes

  • Dirk Hegemann

Abstract

Plasma polymerization covers a broad range of plasma deposits from soft to hard coatings. Nanoscale coatings are formed within a dry and eco-friendly process on different substrate materials and structures. To gain a deeper insight into plasma polymerization, a macroscopic approach using the concept of chemical quasi-equilibria might be useful. Following this macroscopic approach, the reaction parameter power input per gas flow W/F, which represents the specific energy invested per particle within the active plasma zone, solely determines the mass deposition rate. Hence, plasma polymerization can be described by measuring the deposited mass and examining the power input and gas flow which contributes to it. Thus, the control, investigation, and up-scaling of plasma polymerization processes are enabled. Different examples are given to make use of the macroscopic approach.


Conference

International Symposium on Plasma Chemistry (ISPC-18), International Symposium on Plasma Chemistry, ISPC, Plasma Chemistry, 18th, Kyoto, Japan, 2007-08-26–2007-08-31


References

1. H. Yasuda. Luminous Chemical Vapor Deposition and Interface Engineering, Marcel Dekker, New York (2005).10.1201/9781420030297Search in Google Scholar

2. D. Hegemann. Indian J. Fibre Text. Res. 31, 99 (2006).Search in Google Scholar

3. doi:10.1088/0963-0252/2/4/008, A. Rutscher, H.-E. Wagner. Plasma Sources Sci. Technol. 2, 279 (1993).Search in Google Scholar

4. doi:10.1002/app.1990.070460006, S. Y. Park, N. Kim. J. Appl. Polym. Sci., Appl. Polym. Symp. 46, 91 (1990).Search in Google Scholar

5. doi:10.1023/A:1014461932094, D. Hegemann, H. Brunner, C. Oehr. Plasmas Polym. 6, 221 (2001).Search in Google Scholar

6. D. Hegemann, D. J. Balazs, M. Amberg, A. Fischer. Proc. 17th Int. Symp. Plasma Chem., Toronto, Canada (2005).Search in Google Scholar

7. D. Hegemann. Proc. 18th Int. Symp. Plasma Chem., Kyoto, Japan (2007).Search in Google Scholar

8. doi:10.1016/j.surfcoat.2005.02.194, D. Hegemann, U. Schutz, A. Fischer. Surf. Coat. Technol. 200, 458 (2005).Search in Google Scholar

9. doi:10.1002/ppap.200500041, D. Hegemann, M. M. Hossain. Plasma Process. Polym. 2, 554 (2005).Search in Google Scholar

10. D. Hegemann. In Plasma Polymers & Related Materials, M. Mutlu (Ed.), pp. 191-200, University Press, Ankara, Turkey (2005).Search in Google Scholar

11. H. Yasuda. Plasma Polymerization, Academic Press, New York (1985).Search in Google Scholar

12. doi:10.1002/pen.10653, M. S. Silverstein, R. Chen, O. Kesler. Polym. Eng. Sci. 36, 2542 (1996).Search in Google Scholar

13. doi:10.1002/ppap.200600076, M. A. Gilliam, Q. Yu, H. Yasuda. Plasma Process. Polym. 4, 165 (2007).Search in Google Scholar

14. doi:10.1002/ppap.200731907, L. Ledernez, H. Yasuda, F. Olcaytug, F. Gemetz, G. Urban. Plasma Process. Polym. 4, S794 (2007).Search in Google Scholar

15. doi:10.1088/0963-0252/14/3/017, M. Bauer, T. Schwarz-Selinger, H. Kang, A. von Keudell. Plasma Sources Sci. Technol. 14, 543 (2005).Search in Google Scholar

16. doi:10.1002/ppap.200700077, F. Truica-Marasescu, M. R. Wertheimer. Plasma Process. Polym. 5, 44 (2008).Search in Google Scholar

17. doi:10.1002/ppap.200600169, D. Hegemann, M. M. Hossain, E. Korner, D. J. Balazs. Plasma Process. Polym. 4, 229 (2007).Search in Google Scholar

18. doi:10.1016/j.tsf.2005.05.041, D. Hegemann, U. Schutz. Thin Solid Films 491, 96 (2005).Search in Google Scholar

19. doi:10.1116/1.2362723, G. Capote, R. Prioli, F. L. Freire Jr. J. Vac. Sci. Technol., A 24, 2212 (2006).Search in Google Scholar

20. doi:10.1016/j.tsf.2006.06.020, D. Hegemann. Thin Solid Films 515, 2173 (2006).Search in Google Scholar

21. doi:10.1016/j.porgcoat.2006.08.027, D. Hegemann, M. M. Hossain, D. J. Balazs. Prog. Organic Coat. 58, 237 (2007).Search in Google Scholar

22. doi:10.1002/ppap.200600085, M. M. Hossain, A. S. Herrmann, D. Hegemann. Plasma Process. Polym. 4, 135 (2007).Search in Google Scholar

23. doi:10.1116/1.2699216, D. Liu, E. R. Fisher. J. Vac. Sci. Technol., A 25, 368 (2007).Search in Google Scholar

24. doi:10.1063/1.369055, M. Zhang, Y. Nakayama, T. Miyazaki, M. Kume. J. Appl. Phys. 85, 2904 (1999).Search in Google Scholar

25. doi:10.1063/1.368716, N. E. Capps, N. M. Mackie, E. R. Fisher. J. Appl. Phys. 84, 4736 (1998).Search in Google Scholar

26. doi:10.1063/1.2206973, I. T. Martin, J. Zhou, E. R. Fisher. J. Appl. Phys. 100, 013301 (2006).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2008-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1351/pac200880091893/html
Scroll to top button