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Abstract
This paper extends the previous probability model for the distribution of lead time in periodic

cancer screening exams, namely, in that the lifetime T is treated as a random variable, instead
of a fixed value. Hence the number of screens for a given individual is a random variable as
well. We use the actuarial life table from the Social Security Administration to obtain the lifetime
distribution, and then use this information to project the lead time distribution for someone with a
future screening schedule. Simulation studies using the HIP study group data provide estimates of
the lead time under different screening frequencies. The projected lead time has two components:
a point mass at zero (corresponding to interval cases detected between screening exams) and a
continuous probability density. We present estimates of the projected lead time for participants in
a breast cancer screening program. The model is more realistic and can inform optimal screening
frequency. This study focuses on breast cancer screening, but is applicable to other kinds of cancer
screening also.
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1 Introduction

Breast cancer is the most common form of cancer among women in the U.S.
and the second leading cause of cancer deaths among women. Breast cancer
screening exams (mammography, clinical breast exam, breast self-exam) have
been advocated since the 1970s, although opinions differ regarding the age to
start screening and the screening frequencies. In November 2009, The U.S.
Preventive Services Task Force (USPSTF 2009, Mandelblatt et al., 2009) an-
nounced its recommendation statement for breast cancer screening: biennial
screening mammography for women aged 50 (versus 40) to 74 years.

The goal of screening is to detect malignant tumors early, which hope-
fully translates to early treatment and better prognosis. The difference be-
tween the time of diagnosis via a screening exam and the time of clinical
disease onset without screening is called the lead time. Even in the absence
of effective therapy, screening will appear to extend the survival time from di-
agnosis until death because of lead time. If one does not account for the lead
time when analyzing the survival benefit due to screening, then one’s inference
is subject to lead-time bias. Hence accurate evaluation of the distribution of
lead time is important.

We assume the commonly followed disease progressive model where the
disease develops by progressing through three states, denoted by S0 → Sp → Sc
(Zelen and Feinleib, 1969). The state S0 refers to the disease-free state, where
either the person does not have the disease, or the disease is in such an early
stage that it cannot be detected by a screening exam. The preclinical disease
state, Sp, is a state in which an asymptomatic individual unknowingly has
disease that a screening exam can detect. The disease state Sc is a state at
which the disease manifests itself with clinical symptoms. If a person enters
the preclinical state (Sp) at age t1 and becomes clinically incident (Sc) later
at age t2(> t1), then (t2 − t1) is the sojourn time in the preclinical state. If,
however, this person undergoes a screening exam at time t within the time
interval (t1, t2) and cancer is diagnosed, then the length of time (t2 − t) is the
person’s lead time.

Many researchers have proposed methods for inference on the lead time
among participants in a screening program (Kafadar and Prorok, 1994, 1996,
2003; Kafadar et al., 1998, Walter and Day, 1983, Straatman et al., 1997),
usually by providing formulas to estimate the mean and the variance of the
lead time. Among these works, Prorok 1982 made a major contribution by
deriving the conditional probability distribution of the lead time, given detec-
tion at the i-th screening exam. He applied his model in simulations to study
the properties of the lead time, assuming different sojourn time distributions,
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and found that when one increases the number of exams, keeping the between-
exam interval fixed, the local lead time properties are relatively constant after
4 or 5 screening exams in his examples. The stabilization of the local lead time
properties suggested a stopping rule for comparative studies, in that further
screening exams may not yield more information about the benefit of screen-
ing versus no screening. However, he considered only screen-detected cases,
ignoring interval cases for which the lead time is zero. His results apply to
cases that are screen-detected at the i-th screening exam. He did not esti-
mate the proportion of cases that are not detected by the periodic screening.
This group of people does not derive any benefit from screening because their
tumors were not diagnosed at scheduled exams; for these “clinical incident”
cases, their lead time is zero. For policy purposes, it is important to estimate
how large this proportion may be.

Wu et al. (2007) derived the probability distribution of lead time for
the whole diseased cohort, including both screen-detected cases and interval-
incident cases, when the human lifetime was treated as a fixed value. The
model includes Prorok’s result as a special case (no interval cases). Hence, the
model allows estimation of the proportion of patients whose lead time is zero
and the proportion whose lead time is positive from the program. However,
the lead time distribution was derived when the lifetime T was a fixed upper
bound, which is not realistic.

In this paper, we first review briefly the method for deriving lead time
distribution developed by Wu et al. 2007 (Section 2). We then extend the
method by allowing the lifetime T , and the number of screens to be random
variables. In Section 3, we derive the distribution of the lead time for the
whole diseased cohort when the lifetime T is a random variable. We obtain
the lifetime distribution by using the actuarial life table from the Social Se-
curity Administration in Section 4. Section 5 presents simulation results for
different initial screening ages and different screening frequencies by applying
the method to the HIP data using Bayesian inference. We conclude with a
discussion in Section 6.

2 Existing method: the lead time distribution

when T is fixed

Consider a cohort of initially asymptomatic individuals in a screening program.
Throughout we use female breast cancer as an example, but the approach
applies to screening for other diseases also. Let β(t) be the sensitivity of
the screening modality, where t is the individual’s age at the exam. Define
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w(t)dt as the probability of a transition from S0 to Sp during (t, t + dt). Let
q(·) be the probability density function (pdf) of the sojourn time in Sp, and
let Q(z) =

∫∞
z q(x)dx be the survivor function of the sojourn time in the

preclinical state Sp. Throughout this paper, the time variable t represents
the participating individual’s age; the random variable T represents human
lifetime. We briefly review the probability model in Wu et al 2007, but with
new notation, which allows a clearer presentation for the new model in Section
3.

Consider an initially asymptomatic woman with no history of breast
cancer, and suppose she undergoes K screening exams at ages t0 < t1 < . . . <
tK−1. Let T = tK denote her (fixed) lifetime, where tK > tK−1. Note that no
screening takes place at tK , but setting tK = T simplifies the formulae. We
let t−1 = 0 and βi = β(ti) to be the sensitivity at age ti throughout the paper.

Let D be a binary random variable, with D = 1 indicating development
of clinical disease and D = 0 indicating the absence of the clinical disease be-
fore death. Let L denote the lead time for an individual who develops symp-
tomatic cancer. Because the lead time is 0 for individuals whose disease is not
detected by the screening exam (e.g., interval cases where clinical symptoms
arise between exams), the distribution of lead time L conditional on T = tK ,
is a mixture of a point mass at 0 and the conditional pdf fL(z|D = 1, T = tK).

When the lifetime T = tK is a fixed value, the distribution of lead time
is:

P (L = 0|D = 1, T = tK) =
P (L = 0, D = 1|T = tK)

P (D = 1|T = tK)
, (1)

fL(z|D = 1, T = tK) =
fL(z,D = 1|T = tK)

P (D = 1|T = tK)
, (2)

where

P (D = 1|T = tK) =
∫ tK

t0

∫ t

0
w(x)q(t− x)dxdt

=
∫ t0

0
w(x)[Q(t0 − x)−Q(tK − x)]dx+

∫ tK

t0
w(x)[1−Q(tK − x)]dx.(3)

and

P (L = 0, D = 1|T = tK) = IK,1 + IK,2 + · · ·+ IK,K , (4)

IK,j =
j−1∑
i=0

(1− βi) · · · (1− βj−1)
∫ ti

ti−1

w(x)[Q(tj−1 − x)−Q(tj − x)]dx
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+
∫ tj

tj−1

w(x)[1−Q(tj − x)]dx, for all j = 1, · · · , K, (5)

and where

fL(z,D = 1|T = tk) = β0

∫ t0

0
w(x)q(t0 + z − x)dx, (6)

if tK − t1 < z ≤ tK − t0,

or

fL(z,D = 1|T = tK)

=
j−1∑
i=1

βi

{
i−1∑
r=0

(1− βr) · · · (1− βi−1)
∫ tr

tr−1

w(x)q(ti + z − x)dx

+
∫ ti

ti−1

w(x)q(ti + z − x)dx

}
+ β0

∫ t0

0
w(x)q(t0 + z − x)dx.

if tK − tj < z ≤ tK − tj−1, j = 2, 3, · · · , K. (7)

We note that we add T = tK in the conditional part in the above equations,
to underline K screening exams in one’s lifetime when T = tK is a fixed value.

The validity of this mixed probability distribution can be proved by
confirming

P (L = 0|D = 1, T = tK) +
∫ tK−t0

0
fL(z|D = 1, T = tK)dz = 1. (8)

3 The lead time distribution when T is a ran-

dom variable

We now expand this model in Section 2 to the situation when the lifetime
T is a random variable with a probability density function fT (t). Hence, an
individual currently at age t0 will have a variable number of screening exams
K = k(T ), a function of her lifetime T . In fact, K is the largest integer such
that tK−1 < T . The distribution of lead time when the lifetime T is greater
than t0 can be obtained by:

P (L = 0|D = 1, T ≥ t0) =
∫ ∞
t0

P (L = 0|D = 1, T = t)fT (t|T ≥ t0)dt,(9)

fL(z|D = 1, T ≥ t0) =
∫ ∞
t0+z

fL(z|D = 1, T = t)fT (t|T ≥ t0)dt, (10)
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z ∈ (0,∞),

where the conditional probability P (L = 0|D = 1, T = t) and the conditional
pdf fL(z|D = 1, T = t) were given in Equations (1)-(2) in Section 2; and the
conditional pdf fT (t|T ≥ t0) is

fT (t|T ≥ t0) =

{
fT (t)

P (T>t0)
= fT (t)

1−FT (t0)
, if t ≥ t0,

0, otherwise.
(11)

The lower bound for the integration in (10) should be (t0 + z) instead of t0,
because the lead time z should be less than t − t0 for any fixed lifetime t,
hence t should be larger than t0 + z. Equations (9)-(11) yield a valid mixed
probability distribution, because

P (L = 0|D = 1, T ≥ t0) +
∫ ∞

0
fL(z|D = 1, T ≥ t0)dz

=
∫ ∞
t0

P (L = 0|D = 1, T = t)fT (t|T ≥ t0)dt

+
∫ ∞

0

∫ ∞
t0+z

fL(z|D = 1, T = t)fT (t|T ≥ t0)dtdz

=
∫ ∞
t0

P (L = 0|D = 1, T = t)fT (t|T ≥ t0)dt

+
∫ ∞
t0

∫ t−t0

0
fL(z|D = 1, T = t)fT (t|T ≥ t0)dzdt

=
∫ ∞
t0

fT (t|T ≥ t0)dt = 1.

4 The lifetime distribution fT (t|T ≥ t0)

To obtain reliable information on the lifetime distribution, we used the actu-
arial life table from the United States Social Security Administration (SSA),
which was published and updated regularly at:
http://ssa.gov/OACT/STATS/table4c6.html.

This life table is based on the information from all Social Security area
populations, including all 50 states, DC, and surrounding islands of the U.S.
until 2006. Due to the SSA’s calculation method, there is a time lag of 4
years in the life table. We used the version that was reviewed and updated by
SSA in April 2010 (the most recent version includes mortality rates until 2007,
updated on April 5, 2011, but the changes are very slight). The period life
table is based on population mortality; it provides the conditional probability
of death within one year from age 0 to age 119, that is, P (T < N + 1|T ≥
N), N = 0, 1, 2, . . . , 119.
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We denote this probability by bN = P (T < N + 1|T ≥ N), as given in
the life table. Let aN = P (T ≥ N +1|T ≥ N) = 1− bN . Using the conditional
probability formula,

P (T ≥ N + 2|T ≥ N) = P (T ≥ N + 2, T ≥ N + 1|T ≥ N)

= P (T ≥ N + 1|T ≥ N)P (T ≥ N + 2|T ≥ N + 1, T ≥ N) (12)

= aNaN+1

By mathematical induction, for any integer age t0,

P (T ≥ t0 +N |T ≥ t0) =
N∏
i=1

P (T ≥ t0 + i|T ≥ t0 + i− 1)

=
N∏
i=1

at0+i−1, ∀N = 1, 2, . . . , 120− t0. (13)

Using a density approximation, we have

fT (t = t0 +N |T ≥ t0) = lim
ε→0

P (t0 +N < T ≤ t0 +N + ε|T ≥ t0)

ε
≈ P (t0 +N < T ≤ t0 +N + 1|T ≥ t0) (14)

= P (T ≥ t0 +N |T ≥ t0)− P (T ≥ t0 +N + 1|T ≥ t0)

= (1− at0+N)
N∏
i=1

at0+i−1. (15)

Finally, for any real number t ∈ (N,N + 1) (here N < 120), we use a
step function to approximate: fT (t|T ≥ t0) ≈ fT (N |T ≥ t0). We note that
this approximation is a valid pdf, as

120−t0∑
N=0

fT (t0 +N |T ≥ t0) =
120−t0∑
N=0

[P (T ≥ t0 +N |T ≥ t0)

−P (T ≥ t0 +N + 1|T ≥ t0)]

= P (T ≥ t0|T ≥ t0) = 1

The conditional density function of the lifetime T for females was plotted in
Figure 1 for three initial ages at screening: t0 = 40, 50, 60 (i.e. irrelevance of
screening or any specific causes of death).
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Figure 1: The conditional PDF of the lifetime for females derived from the life
table when t0 = 40, 50, 60.

5 Applications and simulations based on the

HIP study

Using the results in Section 3, the lead time distribution is a function of the
sensitivity β(t), the transition probability density w(t), the sojourn time distri-
bution q(x), a person’s initial age at screening, and future screening frequency
or screening schedule. Thus inference on the lead time distribution requires
estimates of β(t), w(t) and q(x), which are available from the Health Insur-
ance Plan for Greater New York (HIP) study using likelihoods and Bayesian
inference (Wu et al 2005). The parametric model was:

β(t) =
1

1 + exp{−b0 − b1(t−m)}
, (16)

w(t|µ, σ2) =
0.2√
2πσt

exp
{
−(log t− µ)2/(2σ2)

}
, σ > 0, (17)

and

q(x) =
κxκ−1ρκ

[1 + (xρ)κ]2
, κ > 0, ρ > 0, (18)
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where t represents age, m is the average age at study entry, and x is the
sojourn time in the preclinical state Sp. The unknown parameters are θ =
(b0, b1, µ, σ

2, κ, ρ). Markov Chain Monte Carlo (MCMC) was used to draw
posterior samples with noninformative priors, with 30,000 iterations, 10,000
burn-in steps, and then sampled every 20 steps. The final 2000 posterior
samples for θ came from two parallel chains with overdispersed initial values
(http://www.tibs.org/biometrics under Paper Information link).

We use the Bayesian posterior samples θ∗i in the inference for the lead
time. The posterior predictive distribution of the lead-time is:

fHIPL (l) =
∫
fHIPL (l, θ)dθ

=
∫
fHIPL (l|θ)fHIPΘ (θ)dθ

≈ 1

n

n∑
i=1

fHIPL (l|θ∗i ), (19)

where θ∗i is the posterior sample (i = 1, · · · , 2000) and fHIPL (l|θ∗i ) is the mixture
distribution defined by Equations (9)-(11).

We assumed that the sensitivity β(t), the transition probability w(t),
and the sojourn time distribution q(x) are the same today as it was when
the HIP study was conducted. The method can be applied to any pre-planned
screening schedule, for example, people can take screening annually between 50
and 60, then take it biennually between 60 and 80. For simplicity, we assume
three cohorts of initially asymptomatic women, with initial screening age t0 =
40, 50, and 60. For each cohort, we examined various screening frequencies,
with screening interval ∆ =12, 18, 24, and 30 months. The number of screen-
ings K = d(T − t0)/∆e is a function of the lifetime T , therefore it is a random
variable in the simulation. From Equation (19), the final distribution of the
lead time is simply a weighted average of the different lengths of lifetimes.

Table 1 summarizes the Bayesian predictive inference for the lead time.
The time interval ∆ between screens was 12, 18, 24 and 30 months with
initial ages 40, 50, and 60. The probability that the lead time is zero and
the corresponding 95% C.I., and the probability that the lead time is positive,
and the corresponding standard errors are reported as percentages in Table
1. The mean lead time and its standard error were reported in years. Since
the lead time distribution is very skewed, we report also the median and the
fourth-spread as more sensible summaries of location and spread. The median
of the lead time (when it is positive) is about 0.85 years for all 12 situations;
the first quartile of the lead time ranges from 0.35 to 0.45 years, and the third
quartile ranges from 1.65 to 1.85 years. The density curves for the lead time
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Table 1: A projection of the lead time distribution using posterior samples
from the HIP study data

∆a P b
0 (C.I.) 1-P0 (s.e.) ELc (s.e.) Med/IQRd

Age at initial screen t0 = 40
12 mo. 26.29 (16.48, 39.68) 73.71 (5.99) 1.04(1.69) 0.71
18 mo. 39.25 (27.10, 50.72) 60.75 (5.96) 0.87(1.63) 0.61
24 mo. 49.04 (36.19, 59.00) 50.96 (5.95) 0.75(1.58) 0.61
30 mo. 56.34 (42.66, 65.99) 43.66 (5.87) 0.66(1.52) 0.57

Age at initial screen t0 = 50
12 mo. 23.76 (12.39, 41.42) 76.24 (7.07) 1.07(1.70) 0.71
18 mo. 36.51 (22.19, 52.25) 63.49 (7.35) 0.91(1.65) 0.61
24 mo. 46.32 (29.37, 59.98) 53.68 (7.35) 0.79(1.60) 0.61
30 mo. 53.71 (35.75, 65.76) 46.29 (7.18) 0.70(1.55) 0.57

Age at initial screen t0 = 60
12 mo. 21.98 (8.22, 45.49) 78.02 (8.47) 1.08(1.68) 0.65
18 mo. 34.28 (16.78, 55.15) 65.72 (9.06) 0.92(1.63) 0.65
24 mo. 43.91 (22.88, 61.45) 56.09 (9.08) 0.81(1.59) 0.61
30 mo. 51.21 (29.42, 66.50) 48.79 (8.84) 0.72(1.55) 0.61

a ∆ = ti − ti−1 is the time interval between screens.
b P0 = P (L = 0|D = 1) is the probability of “no-early-detection” Columns 2 and 3 are in
percentages.
cthe mean and the standard deviation(S.E.) in column 4 are in years, for the mixture
distribution.
dthe median over the fourth-spread (interquartile range) when the lead time is greater than
zero.
This is a simulated projection. the number of screens K is a random variable, changing
with the lifetime T .
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are shown in Figure 2 for different screening intervals only when t0 = 50, as
the density curves when the initial screening age is 40 or 60 are similar.

years
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0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

delta=1.0yr
delta=1.5yr
delta=2.0yr
delta=2.5yr

Figure 2: Density Curve for the Lead Time in the HIP Study Using Bayesian
Inference with t0 = 50.

These results suggest that a woman who begins annual screening (i.e.,
∆ = 12 months) when she is 50 years old and develops breast cancer some-
time during her life has a 23.76% chance that she will not be detected early
by the regular screening exams. This probability of no early detection from
the screening program increases to 46.32% if the exams are biennial. For a
woman with initial screening age at 40 [respectively, 60], the probability of no
early detection with annual screens will be 26.29% [respectively 21.98% for age
60]. The probability of no early detection is monotonically increasing when
the screening interval increases within the same age group. This probability
is mononically decreasing as the initial age increases for the same screening
interval. The difference between the initial age 50 and 60 is smaller than that
corresponding difference between the initial age 40 and 50 groups.

Mean lead time decreases as the screening time interval increases in
Table 1; i.e., more frequent screening exams result in longer lead times. The
increase in the mean lead time is due partly to the smaller point mass for zero
lead time when screening exams are closer together. The standard deviation of
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the lead time decreases as the time between screening exams increases. Table
1 also reveals that the standard deviation for the lead time is larger than the
mean lead time. However, since the density of the lead time is very skewed,
the median and fourth-spread are more meaningful estimates of the location
and the spread; hence, we also consider the ratio of median/fourth-spread.
This ratio decreases as the screening interval increases, and lies between 0.57
and 0.71 for different cases in Table 1.

The mode of the lead time is less than 0.1 year (or 1 month) when
the screening interval is 2 or 2.5 years for all three groups; when the screening
interval is 1.5 years, the mode is slightly above 0.1 years (or 1.2 months) for all
three age groups; when the screening interval is one year, the mode is around
0.24 years (or 2.8 months) for all three age groups.

We reported the 95% credible intervals for the probability of “no early
detection” in Table 1. For example, for the 50-year-old group who received
annual screens, the probability of no-early-detection could be as low as 12.39%,
or as high as 41.42%. The standard deviation of the probability of early-
detection is also reported in Table 1 (5% - 9%).

We ran a simulation according to the recommandation of the U.S. Pre-
ventive Services Task Force, that is, biennial screening for women aged 50 to
74. The result does not bode well for screening. The probability of no-early-
detection (the interval case) is 56.36% (standard error ≈ 5.24%), or effectively
about 50-50 odds. In another simulation with annual screening from age 50 to
60, followed by biennial screening from 60 to 80 (and no further screens), the
probability of zero lead time is 42.93%; it is very similar to the case of starting
age at 50 or 60 in Table 1, with biennial screenings. Other statistics are also
similar, such as the mean and median lead time, and the ratio (median/ fourth
spread).

6 Discussion

We derived the probability distribution for the lead time in a periodic screening
scenario when the lifetime is subject to a competing risk. The distribution of
the lead time is a mixture of a point mass at zero and a piecewise continuous
density function. The mixture formulation considers all diseased cases among
participants in a screening program, that is, those diagnosed by screening and
those interval cases.

Our model extends previous work on the lead time, where human life-
time was fixed at an upper bound, such as 80 years old. The new screening
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model is more realistic. When comparing the results, the probability of no-
early-detection for the 50-year-old group is very close to the results in the old
model for different screening intervals with a fixed upper bound of the lifetime.
The old model was simulated using the initial age t0 = 50 and the fixed upper
bound of age T = 80. However, the mean and the standard deviation of the
lead time are both much smaller in the new model’s simulations. The mode
of the lead time is also much smaller. The median of the lead time (when it is
positive) is fairly stable, about 0.85 years for all cases, suggesting that screen-
ing intervals greater than one year will have little effect on early detection.
The result also shows that about a quarter of those who were detected early
will have a lead time less than 0.4 years (the first quartile), and about a half
of them will have a lead time between 0.4 and 1.7 years.

Since the estimates of the sensitivity, the transition probability, and the
sojourn time distribution that we used in the simulation were from the HIP
data, which is an old study, the results might not reflect current conditions and
measuring equipment. We hope to obtain more accurate estimates of these key
parameters.

By incorporating the possibility of death from a cause other than breast
cancer, the inference can be extended to provide information on the effect of a
screening program on a woman’s risk of dying from breast cancer or even her
risk of a diagnosis of breast cancer during her lifetime. One can use our model
to infer future outcome measures that relate to different screening schedules
and different initial ages of periodic screening, such as the possibility of being
detected early from various screening programs. One can also use our model
to evaluate and compare the characteristics of different possible screening pro-
grams. For example, the model can provide answers to questions, such as
those concerning future outcomes of periodic screening exams for a woman in
her 50s or 60s, and these outcomes change as the frequency of screening exams
changes (e.g., screening every 12 or 24 months). Other questions of interest
are: What is the probability that a woman’s cancer will be detected early if
she has cancer? How do changes in the screening program affect the lead time
distribution?

As suggested by an anonymous referee, other factors, such as race,
receptor status, etc. may affect outcomes for the lead time. Since the dis-
tribution of lead time is a function of the screening sensitivity, the transition
density and the sojourn time distribution, and these three parameters can be
estimated from screening data of specific sub-groups. We plan to collect data
on some specific sub-groups and explore the effect of risk group in the future.
Further work to improve the model includes the case when the sensitivity and
the sojourn time are correlated. Our current model assumes that these two
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key parameters are independent, but in fact there is strong evidence to suggest
that these two key parameters may be correlated. For example, the sensitivity
might be positively related to the time a person has remained in the preclini-
cal state (the longer an individual stays in the preclinical state, the higher the
sensitivity will be). We plan to investigate such extension in future work.
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