Contents

List of Figures xi
Preface xiii
Acknowledgements xvii
Notational Conventions xix
About Proofs xxii
On Computational Tractability xxiv

1 Sparse Recovery via ℓ_1 Minimization 1
 1.1 Compressed Sensing: What is it about? 1
 1.1.1 Signal Recovery Problem 1
 1.1.2 Signal Recovery: Parametric and nonparametric cases 2
 1.1.3 Compressed Sensing via ℓ_1 minimization: Motivation 6
 1.2 Validity of sparse signal recovery via ℓ_1 minimization 8
 1.2.1 Validity of ℓ_1 minimization in the noiseless case 8
 1.2.2 Imperfect ℓ_1 minimization 11
 1.2.3 Regular ℓ_1 recovery 13
 1.2.4 Penalized ℓ_1 recovery 14
 1.2.5 Discussion 14
 1.3 Verifiability and tractability issues 19
 1.3.1 Restricted Isometry Property and s-goodness of random matrices 20
 1.3.2 Verifiable sufficient conditions for $Q_q(s,\kappa)$ 20
 1.3.3 Tractability of $Q_\infty(s,\kappa)$ 22
 1.4 Exercises for Chapter 1 26
 1.5 Proofs 30
 1.5.1 Proofs of Theorem 1.3, 1.4 30
 1.5.2 Proof of Theorem 1.5 32
 1.5.3 Proof of Proposition 1.7 33
 1.5.4 Proof of Propositions 1.8 and 1.12 36
 1.5.5 Proof of Proposition 1.10 37
 1.5.6 Proof of Proposition 1.13 39

2 Hypothesis Testing 41
 2.1 Preliminaries from Statistics: Hypotheses, Tests, Risks 41
 2.1.1 Hypothesis Testing Problem 41
 2.1.2 Tests 42
 2.1.3 Testing from repeated observations 42
 2.1.4 Risk of a simple test 45
CONTENTS

2.1.5 Two-point lower risk bound 46

2.2 Hypothesis Testing via Euclidean Separation 49

2.2.1 Situation .. 49

2.2.2 Pairwise Hypothesis Testing via Euclidean Separation ... 50

2.2.3 Euclidean Separation, Repeated Observations, and Majority Tests .. 55

2.2.4 From Pairwise to Multiple Hypotheses Testing 58

2.3 Detectors and Detector-Based Tests 65

2.3.1 Detectors and their risks 65

2.3.2 Detector-based tests ... 65

2.4 Simple observation schemes 72

2.4.1 Simple observation schemes—Motivation 72

2.4.2 Simple observation schemes—The definition 73

2.4.3 Simple observation schemes—Examples 74

2.4.4 Simple observation schemes—Main result 79

2.4.5 Simple observation schemes—Examples of optimal detectors 83

2.5 Testing multiple hypotheses 87

2.5.1 Testing unions ... 88

2.5.2 Testing multiple hypotheses “up to closeness” 91

2.5.3 Illustration: Selecting the best among a family of estimates 97

2.6 Sequential Hypothesis Testing 105

2.6.1 Motivation: Election polls 105

2.6.2 Sequential hypothesis testing 108

2.6.3 Concluding remarks .. 113

2.7 Measurement Design in simple observation schemes 113

2.7.1 Motivation: Opinion polls revisited 113

2.7.2 Measurement Design: Setup 115

2.7.3 Formulating the MD problem 116

2.8 Affine detectors beyond simple observation schemes 123

2.8.1 Situation .. 124

2.8.2 Main result ... 132

2.9 Beyond the scope of affine detectors: lifting the observations 139

2.9.1 Motivation .. 139

2.9.2 Quadratic lifting: Gaussian case 140

2.9.3 Quadratic lifting—Does it help? 142

2.9.4 Quadratic lifting: Sub-Gaussian case 145

2.9.5 Generic application: Quadratically constrained hypotheses . 147

2.10 Exercises for Chapter 2 157

2.10.1 Two-point lower risk bound 157

2.10.2 Around Euclidean Separation 157

2.10.3 Hypothesis testing via ℓ_1-separation 157

2.10.4 Miscellaneous exercises 163

2.11 Proofs 168

2.11.1 Proof of the observation in Remark 2.8 168

2.11.2 Proof of Proposition 2.6 in the case of quasi-stationary K-repeated observations 168

2.11.3 Proof of Theorem 2.23 172

2.11.4 Proof of Proposition 2.37 175

2.11.5 Proof of Proposition 2.43 176

2.11.6 Proof of Proposition 2.46 180
3 From Hypothesis Testing to Estimating Functionals 185
 3.1 Estimating linear forms on unions of convex sets 185
 3.1.1 The problem 186
 3.1.2 The estimate 187
 3.1.3 Main result 189
 3.1.4 Near-optimality 190
 3.1.5 Illustration 191
 3.2 Estimating N-convex functions on unions of convex sets 193
 3.2.1 Outline 194
 3.2.2 Estimating N-convex functions: Problem setting ... 197
 3.2.3 Bisection estimate: Construction ... 199
 3.2.4 Building Bisection estimate ... 201
 3.2.5 Bisection estimate: Main result ... 202
 3.2.6 Illustration 203
 3.2.7 Estimating N-convex functions: An alternative ... 205
 3.3 Estimating linear forms beyond simple observation schemes 211
 3.3.1 Situation and goal 212
 3.3.2 Construction and main results 213
 3.3.3 Estimation from repeated observations 216
 3.3.4 Application: Estimating linear forms of sub-Gaussianity parameters 218
 3.4 Estimating quadratic forms via quadratic lifting 222
 3.4.1 Estimating quadratic forms, Gaussian case 222
 3.4.2 Estimating quadratic form, sub-Gaussian case 228
 3.5 Exercises for Chapter 3 238
 3.6 Proofs 250
 3.6.1 Proof of Proposition 3.3 250
 3.6.2 Verifying 1-convexity of the conditional quantile 253
 3.6.3 Proof of Proposition 3.4 254
 3.6.4 Proof of Proposition 3.14 258

4 Signal Recovery by Linear Estimation 260
 Overview 260
 4.1 Preliminaries: Executive summary on Conic Programming 262
 4.1.1 Cones 262
 4.1.2 Conic problems and their duals 263
 4.1.3 Schur Complement Lemma 265
 4.2 Near-optimal linear estimation from Gaussian observations 265
 4.2.1 Situation and goal 265
 4.2.2 Building a linear estimate 267
 4.2.3 Byproduct on semidefinite relaxation 274
 4.3 From ellitopes to spectratopes 275
 4.3.1 Spectratopes: Definition and examples 275
 4.3.2 Semidefinite relaxation on spectratopes 277
 4.3.3 Linear estimates beyond ellitopic signal sets and $\| \cdot \|_2$-risk 278
 4.4 Linear estimates of stochastic signals 291
 4.4.1 Minimizing Euclidean risk 293
 4.4.2 Minimizing $\| \cdot \|\text{-risk} 294
 4.5 Linear estimation under uncertain-but-bounded noise 295
 4.5.1 Uncertain-but-bounded noise 295
CONTENTS

6.2.1 Two-point lower risk bound 454
6.2.2 Around Euclidean Separation 455
6.2.3 Hypothesis testing via \(\ell_1 \) separation 457
6.2.4 Miscellaneous exercises 465

6.3 Solutions for Chapter 3 477
6.4 Solutions for Chapter 4 495
 6.4.1 Linear Estimates vs. Maximum Likelihood 495
 6.4.2 Measurement Design in Signal Recovery 497
 6.4.3 Around semidefinite relaxation 502
 6.4.4 Around Propositions 4.4 and 4.14 518
 6.4.5 Numerical lower-bounding minimax risk 572
 6.4.6 Around S-Lemma 586
 6.4.7 Miscellaneous exercises 589

6.5 Solutions for Chapter 5 592
 6.5.1 Estimation by Stochastic Optimization 592

Appendix: Executive Summary on Efficient Solvability of Convex Optimization Problems 609

Bibliography .. 613

Index ... 629