Mathematical Tools for Understanding Infectious Disease Dynamics
PRINCETON SERIES
IN THEORETICAL AND COMPUTATIONAL BIOLOGY

Series Editor, Simon A. Levin

Mathematical Tools for Understanding Infectious Disease Dynamics, by Odo Diekmann, Hans Heesterbeek, and Tom Britton
The Calculus of Selfishness, by Karl Sigmund
The Geographic Spread of Infectious Diseases: Models and Applications, by Lisa Sattenspiel with contributions from Alun Lloyd
Theories of Population Variation in Genes and Genomes, by Freddy Bugge Christiansen
Analysis of Evolutionary Processes, by Fabio Dercole and Sergio Rinaldi
Mathematics in Population Biology, by Horst R. Thieme
Individual-based Modeling and Ecology, by Volker Grimm and Steven F. Railsback
Mathematical Tools for Understanding Infectious Disease Dynamics

Odo Diekmann, Hans Heesterbeek, and Tom Britton
I simply wish that, in a matter which so closely concerns the well-being of the human race, no decision shall be made without all knowledge which a little analysis and calculation can provide.

Daniel Bernoulli, 1760, on smallpox inoculation

As a matter of fact all epidemiology, concerned as it is with variation of disease from time to time or from place to place, must be considered mathematically (...) and the mathematical method of treatment is really nothing but the application of careful reasoning to the problems at hand.

Sir Ronald Ross, 1911, The Prevention of Malaria

We shall end by establishing a new science. But first let you and me unlock the door and then anybody can go in who likes.

Sir Ronald Ross in a letter to A.G. McKendrick, 1911