CONTENTS

PREFACE .. v

CHAPTER 1. INTRODUCTION 1

1.1 General Remarks 1
1.2 Quantitative Statistical Observations 2
1.3 Qualitative Statistical Observations 6

CHAPTER 2. FREQUENCY DISTRIBUTIONS 13

2.1 Frequency Distributions for Ungrouped Measurements 13
2.2 Frequency Distributions for Grouped Measurements 19
2.3 Cumulative Polygons Graphed on Probability Paper 27
2.4 Frequency Distributions -- General 29

CHAPTER 3. SAMPLE MEAN AND STANDARD DEVIATION 34

3.1 Mean and Standard Deviation for the Case of Ungrouped Measurements ... 34

3.11 Definition of the mean of a sample (ungrouped) 34
3.12 Definition of the standard deviation of a sample (ungrouped) 36

3.2 Remarks on the Interpretation of the Mean and Standard Deviation of a Sample 40

3.3 The Mean and Standard Deviation for the Case of Grouped Data ... 42

3.31 An example 42
3.32 The general case 44

3.4 Simplified Computation of Mean and Standard Deviation ... 48

3.41 Effect of adding a constant 48
3.42 Examples of using a working origin 49
3.43 Fully coded calculation of means, variances and standard deviations 52

vii
<table>
<thead>
<tr>
<th>CHAPTER 4. ELEMENTARY PROBABILITY</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Preliminary Discussion and Definitions</td>
<td>58</td>
</tr>
<tr>
<td>4.2 Probabilities in Simple Repeated Trials</td>
<td>64</td>
</tr>
<tr>
<td>4.3 Permutations</td>
<td>68</td>
</tr>
<tr>
<td>4.4 Combinations</td>
<td>73</td>
</tr>
<tr>
<td>4.41 Binomial coefficients</td>
<td>75</td>
</tr>
<tr>
<td>4.5 Calculation of Probabilities</td>
<td>77</td>
</tr>
<tr>
<td>4.51 Complementation</td>
<td>78</td>
</tr>
<tr>
<td>4.52 Addition of probabilities for mutually exclusive events</td>
<td>78</td>
</tr>
<tr>
<td>4.53 Multiplication of probabilities for independent events</td>
<td>79</td>
</tr>
<tr>
<td>4.54 Multiplication of probabilities when events are not independent; conditional probabilities</td>
<td>81</td>
</tr>
<tr>
<td>4.55 Addition of probabilities when events are not mutually exclusive</td>
<td>83</td>
</tr>
<tr>
<td>4.56 Euler diagrams</td>
<td>85</td>
</tr>
<tr>
<td>4.57 General remarks about calculating probabilities</td>
<td>90</td>
</tr>
<tr>
<td>4.6 Mathematical Expectation</td>
<td>93</td>
</tr>
<tr>
<td>4.7 Geometric Probability</td>
<td>96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 5. PROBABILITY DISTRIBUTIONS</th>
<th>98</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Discrete Probability Distributions</td>
<td>98</td>
</tr>
<tr>
<td>5.11 Probability tables and graphs</td>
<td>98</td>
</tr>
<tr>
<td>5.12 Remarks on the statistical interpretation of a discrete probability distribution</td>
<td>101</td>
</tr>
<tr>
<td>5.13 Means, variances and standard deviations of discrete chance quantities</td>
<td>102</td>
</tr>
<tr>
<td>5.2 Continuous Probability Distributions</td>
<td>106</td>
</tr>
<tr>
<td>5.21 A simple continuous probability distribution</td>
<td>106</td>
</tr>
<tr>
<td>5.22 More general continuous probability distributions</td>
<td>109</td>
</tr>
<tr>
<td>5.3 Mathematical Manipulation of Continuous Probability Distributions</td>
<td>111</td>
</tr>
<tr>
<td>5.31 Probability density functions -- a simple case</td>
<td>111</td>
</tr>
<tr>
<td>5.32 Probability density functions -- a more general case</td>
<td>113</td>
</tr>
<tr>
<td>5.33 Continuous probability distributions -- the general case</td>
<td>116</td>
</tr>
<tr>
<td>5.34 The mean and variance of a continuous probability distribution</td>
<td>116</td>
</tr>
<tr>
<td>5.35 Remarks on the statistical interpretation of continuous probability distributions</td>
<td>118</td>
</tr>
</tbody>
</table>
CONTENTS

CHAPTER 6. THE BINOMIAL DISTRIBUTION

- 6.1 Derivation of the Binomial Distribution 122
- 6.2 The Mean and Standard Deviation of the Binomial Distribution 125
- 6.3 "Fitting" a Binomial Distribution to a Sample Frequency Distribution 128

CHAPTER 7. THE POISSON DISTRIBUTION

- 7.1 The Poisson Distribution as a Limiting Case of the Binomial Distribution 133
- 7.2 Derivation of the Poisson Distribution 133
- 7.3 The Mean and Variance of a Poisson Distribution 135
- 7.4 "Fitting" a Poisson Distribution to a Sample Frequency Distribution 137

CHAPTER 8. THE NORMAL DISTRIBUTION

- 8.1 General Properties of the Normal Distribution 144
- 8.2 Some Applications of the Normal Distribution 149
 - 8.21 "Fitting" a cumulative distribution of measurements in a sample by a cumulative normal distribution 149
 - 8.22 "Fitting" a cumulative binomial distribution by a cumulative normal distribution 152
- 8.3 The Cumulative Normal Distribution on Probability Graph Paper 159

CHAPTER 9. ELEMENTS OF SAMPLING

- 9.1 Introductory Remarks 165
- 9.2 Sampling from a Finite Population 165
 - 9.21 Experimental sampling from a finite population 165
 - 9.22 Theoretical sampling from a finite population 167
 - 9.23 The mean and standard deviation of means of all possible samples from a finite population 169
 - 9.24 Approximation of distribution of sample means by normal distribution 175
- 9.3 Sampling from an Indefinitely Large Population 179
 - 9.31 Mean and standard deviation of theoretical distributions of means and sums of samples from an indefinitely large population 179
 - 9.32 Approximate normality of distribution of sample mean in large samples from an indefinitely large population 184
CONTENTS

9.33 Remarks on the binomial distribution as a theoretical sampling distribution

9.4 The Theoretical Sampling Distributions of Sums and Differences of Sample Means
 9.41 Differences of sample means
 9.42 Sums of sample means
 9.43 Derivations

CHAPTER 10. CONFIDENCE LIMITS OF POPULATION PARAMETERS

10.1 Introductory Remarks
10.2 Confidence Limits of p in a Binomial Distribution
 10.21 Confidence interval chart for p
 10.22 Remarks on sampling from a finite binomial population
10.3 Confidence Limits of Population Means Determined from Large Samples
 10.31 Remarks about confidence limits of means of finite populations
10.4 Confidence Limits of Means Determined from Small Samples
10.5 Confidence Limits of Difference between Population Means Determined from Large Samples
 10.51 Confidence limits of the difference $p-p'$ in two binomial populations
 10.52 Confidence limits of the difference of two population means in case of small samples

CHAPTER 11. STATISTICAL SIGNIFICANCE TESTS

11.1 A Simple Significance Test
11.2 Significance Tests by Using Confidence Limits
11.3 Significance Tests without the Use of Population Parameters

CHAPTER 12. TESTING RANDOMNESS IN SAMPLES

12.1 The Idea of Random Sampling
12.2 Runs
12.3 Quality Control Charts

CHAPTER 13. ANALYSIS OF PAIRS OF MEASUREMENTS

13.1 Introductory Comments
13.2 The Method of Least Squares for Fitting Straight Lines
CONTENTS

13.21 An example .. 240
13.22 The general case 245
13.23 The variance of estimates of Y from X 250
13.24 Remarks on the sampling variability of
regression lines 253
13.25 Remarks on the correlation coefficient 255

13.3 Simplified Computation of Coefficients for
Regression Line 261

13.31 Computation by using a working origin 262
13.32 Computation by using a fully coded scheme 264

13.4 Generality of the Method of Least Squares 272

13.41 Fitting a line through the origin by least
squares ... 273
13.42 Fitting parabolas and higher degree polynomials .. 273
13.43 Fitting exponential functions 276

INDEX ... 281