CONTENTS

Introduction		vii
I. THE CLASSICAL LINEAR GROUPS		1
II. Topological Groups		2 5
III. Manifolds		68
IV. Analytic Groups. Lie Groups		99
V. THE DIFFERENTIAL CALCULUS OF CARTAN		139
VI. COMPACT LIE GROUPS AND THEIR REPRESENTATIONS.		171
INDEX		215

THEORY OF LIE GROUPS

I

Some Notations Used in This Book

I. We denote by ϕ the empty set, by $\{a\}$ the set composed of the single element a.

If f is a mapping of a set A into a set B, and if X is a sub-set of B, we denote by f(X) the set of the elements $a \in A$ such that $f(a) \in X$. If g is a mapping of B into a third set C, we denote by $g \circ f$ the mapping which assigns to every $a \in A$ the element g(f(a)).

We use the signs \bigcup , \bigcap to represent respectively the intersection and the union of sets. If E_{α} is a collection of sets, the index α running over a set A, we denote by $\bigcup_{\alpha \in A} E_{\alpha}$ the union of all sets E_{α} and by $\bigcap_{\alpha \in A} E_{\alpha}$ their intersection. We denote by δ_{ij} the Kronecker symbol, equal to 1 if i = j and to 0 if $i \neq j$.

II. If G is a group, we call "neutral element" the element ϵ of G such that $\epsilon \sigma = \sigma$ for every $\sigma \epsilon G$.

We say that a sub-group H of G is "distinguished" if the conditions $\sigma \epsilon G$, $\tau \epsilon H$ imply $\tau \sigma \tau^{-1} \epsilon H$.

If $\sigma = (a_{ij})$ represents a matrix, the symbol $\sigma = a_{ij}$ stands for the determinant of the matrix; $\delta p\sigma$ stands for the trace of the matrix.

If \mathfrak{M} , \mathfrak{N} are vector spaces over the same field K, we call *product* of \mathfrak{M} and \mathfrak{N} , and denote by $\mathfrak{M} \times \mathfrak{N}$, the set of the pairs (e, f) with $e \in \mathfrak{M}$, $f \in \mathfrak{N}$, this set being turned in a vector space by the conventions

$$(\mathbf{e}, \mathbf{f}) + (\mathbf{e}', \mathbf{f}') = (\mathbf{e} + \mathbf{e}', \mathbf{f} + \mathbf{f}')$$

 $a(\mathbf{e}, \mathbf{f}) = (a\mathbf{e}, a\mathbf{f})$ for $a \in K$.

III. Topology. We call topological spaces only the spaces in which Hausdorf separation axiom is satisfied.

A neighbourhood of a point p in space $\mathfrak B$ is understood to be a set N such that there exists an open set U such that $p \mathcal E U \subset N$; N need not be open itself.

The adherence \bar{A} of a set A in a topological space is the set of those points p such that every neighbourhood of p meets A. Every point of \bar{A} is said to be adherent to A. We shall make use of the possibility of defining the topology in a space by the operation $A \to \bar{A}$ of adherence (cf. Alexandroff-Hopf, Topologie, Kap. 1).

Intervals. If a and b are real numbers such that $a \le b$, we denote by]a, b[the open interval of extremities a and b. We set $]a, b] =]a, b[\cup \{b\}, [a, b[=]a, b[\cup \{a\}, [a, b] =]a, b[\cup \{a\} \cup \{b\}.$