Contents

Preface — V

Chapter 1
Introduction — 1
1.1 History of polymers in packaging — 1
1.2 Plastic joining methods — 2
1.2.1 Ultrasonic sealing — 2
1.2.2 Induction sealing — 4
1.2.3 Heat bar sealing — 4
1.2.3.1 VFFS packaging machine — 5
1.2.3.2 HFFS packaging machine — 7
1.2.4 Impulse sealing — 9
1.3 Organization of the book — 10
References — 10

Chapter 2
Molecular mechanism of heat sealing — 13
2.1 Heat sealing from microscopic viewpoint — 13
2.2 Melting of polymer materials — 15
2.3 Surface rearrangement — 17
2.4 Molecular interdiffusion across the interface — 18
2.4.1 Polymer interdiffusion dynamics — 18
2.4.2 Interdiffusion at polymer–polymer interfaces — 22
2.5 Cooling and crystallization — 23
References — 27

Chapter 3
Seal quality and performance evaluation methods — 31
3.1 Seal quality tests — 31
3.1.1 Visual inspection — 33
3.1.2 Flat bar test — 33
3.1.3 Gross leak or bubble test — 34
3.1.4 Pressure decay leak test — 35
3.1.5 Dye penetration test — 36
3.1.6 Pressure-assisted dye penetration test — 37
3.1.7 Airborne ultrasound — 37
3.2 Seal performance tests — 38
3.2.1 Hot tack test — 39
3.2.2 Seal strength measurement — 42
3.2.3 Internal pressurization failure resistance — 44
References — 46

Chapter 4
Sealant layer materials — 49
4.1 Polyethylene — 49
4.1.1 High-density polyethylene (HDPE) — 50
4.1.2 Low-density polyethylene (LDPE) — 50
4.1.3 Linear low-density polyethylene (LLDPE) — 51
4.1.4 Metallocene polyethylene (mPE) — 53
4.1.5 Plastomers — 54
4.2 Polypropylene (PP) — 54
4.3 Ethylene vinyl acetate (EVA) — 56
4.4 Acid copolymers — 58
4.5 Ionomers — 59
4.6 Polyethylene terephthalate (PET) — 61
References — 61

Chapter 5
Effect of processing and material properties on seal performance — 63
5.1 Sealing temperature — 63
5.2 Dwell time — 66
5.3 Sealing pressure — 67
5.4 Effect of material characteristics — 69
5.4.1 Effect of crystallinity — 69
5.4.2 Effect of molecular architecture — 72
5.4.3 Chain branching — 72
5.4.4 Monomer sequence — 74
References — 74

Chapter 6
Modeling of heat sealing process — 77
6.1 Modeling of the interface temperature — 77
6.1.1 Heat transfer in contact areas — 79
6.1.2 Heat transfer within the film — 82
6.2 Modeling of squeeze-out flow — 85
6.3 Modeling seal strength development — 93
References — 96
Chapter 7
Multicomponent sealant films — 101
7.1 Thermodynamics of polymer blends — 101
7.2 Morphology of polymer blends — 105
7.3 Surface morphology of immiscible polymer blend films — 107
7.4 Sealants based on immiscible polymer blends — 109
7.5 Polymer nanocomposites — 112
References — 115

Chapter 8
Bioplastic sealants — 119
8.1 Bio-based polyethylene terephthalate (bio-PET) — 120
8.2 Bio-based Polyethylene (PE) and Ethylene Vinyl Acetate (EVA) — 120
8.3 Poly(lactide) — 121
8.4 Polycaprolactone — 122
8.5 Aliphatic polyesters and copolyesters — 122
8.6 Aromatic copolyesters — 124
8.7 Polyhydroxyalkanoates (PHA) — 125
References — 126

Chapter 9
Case studies — 129
9.1 Design of a peelable sealant for cereal packaging — 129
9.1.1 Solution — 129
9.2 Sealant for liquid packaging — 131
9.2.1 Solution — 131
9.3 Film for heavy-duty shipping sack (HDSS) — 131
9.3.1 Solution — 132
9.4 Peelable film for over-the-mountain packaging — 132
9.4.1 Solution — 133
9.5 Sealant film with caulkability for spouted pouch application — 134
9.5.1 Solution — 135
9.6 Peelable barrier film for dried seeds packaging — 136
9.6.1 Solution — 136
9.7 Oxygen barrier sealant for cheese packaging — 138
9.7.1 Solution — 138
9.8 Film for frozen vegetables — 139
9.8.1 Solution — 139
References — 140

Index — 141