Contents

Preface —— V

List of Figures —— XI

List of Tables —— XV

1 Introduction —— 1
1.1 Wind energy —— 1
1.2 A brief history of wind turbines —— 2
1.3 Current state of wind energy —— 4
1.4 Energy policies for wind power —— 5

2 Wind turbines —— 7
2.1 Classification —— 7
2.1.1 Vertical axis-vs. horizontal-axis wind turbines —— 7
2.1.2 Drag-type and lift-type wind turbines —— 11
2.1.3 Large-scale vs. small-scale wind turbines —— 14
2.2 Need and application of small-scale wind turbines —— 15
2.3 Challenges with small-scale wind turbine designs —— 15

3 Components of a small-scale wind turbine —— 21
3.1 Wind turbine rotor —— 21
3.2 Transmission mechanism —— 25
3.3 Generator —— 25
3.4 Auxiliary components —— 27

4 Aerodynamics of a wind turbine —— 31
4.1 Froude–Rankine theorem —— 32
4.2 Betz’s law —— 33
4.3 Aerodynamics of a wind turbine rotor —— 34
4.4 Blade element theory —— 37
4.5 Blade element momentum theory —— 39
4.6 Blade losses —— 43
4.7 Buhl correction —— 44

5 Applying BEM to small-scale wind turbine blade design —— 47
5.1 Iterative scheme for BEM theory —— 47
5.2 Size of the wind turbine —— 49
5.3 Airfoil selection —— 49
5.4 Blade twist angle — 51
5.5 Number of blades, chord length, and solidity — 53
5.6 Tapering angle — 57
5.7 Wind turbine performance — 58

6 CFD analysis of wind turbines: Fundamentals — 61
6.1 Introduction — 61
6.1.1 The need for high-fidelity modeling techniques — 61
6.1.2 Computational fluid dynamics (CFD) — 61
6.1.3 Capabilities and trade-offs — 62
6.1.4 Goals of this chapter (and Chapter 7) — 64
6.2 Continuous model of wind turbine fluid dynamics — 64
6.3 Discretization techniques — 67
6.3.1 Finite difference method (FDM) — 68
6.3.2 Finite volume method (FVM) — 71
6.3.3 Time discretization — 79
6.4 Solution methods for linear systems — 83
6.4.1 Direct methods — 83
6.4.2 Iterative methods — 85
6.5 Solution methods for the incompressible Navier–Stokes equations — 89
6.5.1 Pressure coupling problem — 90
6.5.2 Pressure-correction methods — 91

7 CFD analysis of wind turbines: Practical guidelines — 101
7.1 Building the computational domain — 101
7.1.1 Turbine geometry and dimensionality — 101
7.1.2 Boundary conditions, spacing, and blockage — 105
7.1.3 Rotational subdomains — 107
7.2 Mesh generation and refinement — 109
7.3 Modeling rotation — 113
7.3.1 Multiple reference frame (MRF) model — 114
7.3.2 Moving mesh models — 114
7.4 Choosing a turbulence method — 116
7.4.1 Reynolds-Averaged Navier–Stokes (RANS) models — 117
7.4.2 Scale-Resolving Simulation (SRS) — 119
7.4.3 Further reading — 120
7.5 Computing the solution — 121
7.5.1 Spatial discretization — 121
7.5.2 Temporal discretization — 121
7.5.3 Solver algorithm — 122
7.5.4 Parallel computing — 122
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5.5</td>
<td>Convergence criteria</td>
<td>123</td>
</tr>
<tr>
<td>7.6</td>
<td>Postprocessing</td>
<td>123</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Visualization</td>
<td>124</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Verification and validation</td>
<td>127</td>
</tr>
<tr>
<td>8</td>
<td>Diffuser-Augmented Small-Scale Wind Turbine</td>
<td>131</td>
</tr>
<tr>
<td>8.1</td>
<td>Flow inside the diffuser without a wind turbine</td>
<td>131</td>
</tr>
<tr>
<td>8.2</td>
<td>Flow inside the diffuser with a wind turbine</td>
<td>132</td>
</tr>
<tr>
<td>8.3</td>
<td>Diffuser design optimization</td>
<td>135</td>
</tr>
<tr>
<td>8.4</td>
<td>Solution strategy</td>
<td>135</td>
</tr>
<tr>
<td>8.5</td>
<td>Effect of geometrical parameters on the velocity augmentation factor</td>
<td>138</td>
</tr>
<tr>
<td>8.6</td>
<td>Some other diffuser designs</td>
<td>140</td>
</tr>
<tr>
<td>8.7</td>
<td>Pros and cons of the diffuser</td>
<td>142</td>
</tr>
<tr>
<td>9</td>
<td>Unconventional wind energy harvesters</td>
<td>143</td>
</tr>
<tr>
<td>9.1</td>
<td>Piezoelectric wind turbine</td>
<td>144</td>
</tr>
<tr>
<td>9.2</td>
<td>Wind power from controlled aerodynamic instability phenomena</td>
<td>147</td>
</tr>
</tbody>
</table>

References —— 151

Index —— 157