CONTENTS

Preface xiii

Acknowledgments xix

Chapter 1 Pipes, Their Applications, and Heat Transfer 1

1.1 Artificial Systems 2

1.2 Oil and Gas Industries 4

1.3 Organic Systems 5

1.4 Pipe Materials 6

1.5 Thermal Management and Pipes 7

1.6 Heat Transfer 9

End Notes 12

Chapter 2 Heat Transfer Modeling 13

2.1 Basic Concepts 14

2.2 Thermal Analysis of Systems (Components and Subcomponents) 16

2.2.1 Thermal Properties of Materials 16

2.2.2 Static versus Dynamic 18

2.2.3 Energy Balance 21

2.3 Modes of Heat Transfer 23

2.3.1 Conduction Heat Transfer 24

2.3.2 Convection Heat Transfer 29

2.3.3 Radiation Heat Transfer 31

2.3.4 Thermal Management 43

2.4 Governing Equations 45

End Notes 50

Chapter 3 Finite Element Analysis 53

3.1 Geometry 54

3.2 Material Properties 56

3.3 Analysis Types 57

3.4 Boundary and Initial Conditions 58

3.5 Mesh Size and Time Step 58

3.6 Solution Control and Convergence 59

Chapter 4 An Introduction to MATLAB 63

4.1 Desktop 64

4.2 Variables 66

4.2.1 Numeric Variables 67

4.2.2 Character Vectors and Strings 68

4.2.3 Logical Variables 70

4.2.4 Variable Names 71
4.3 Creating Matrices 72
 4.3.1 Manual Matrix Creation 72
 4.3.2 Generation of Vectors with Equally-Spaced Values 72
 4.3.3 Random Number Matrices 73
 4.3.4 Special Matrices 74
4.4 Operating on Matrices 75
 4.4.1 Matrix Indexing 75
 4.4.2 Arithmetic Operators 77
 4.4.3 Relational Operators 79
 4.4.4 Matrix Reshaping and Rearrangement 80
 4.4.5 Extracting Information about Matrices 81
 4.4.6 Matrix Inverse 83
 4.4.7 Systems of Linear Equations 86
4.5 Built-in Functions 88
4.6 Scripts 91
4.7 Input-Output Techniques 93
4.8 User-Defined Functions 99
4.9 Plots 103
4.10 Code Examples 109
 4.10.1 Testing Code Execution Speed 109
 4.10.2 Entering Material Properties 111
 4.10.3 Random Walk Plot 114
End Notes 117

Chapter 5 Heat Transfer Problems in MATLAB 119
 5.1 Introduction to PDEs in MATLAB 120
 5.2 Thermal Modeling Using the MATLAB PDE Modeler Application 122
 5.2.1 The PDE Modeler Overview 123
 5.2.2 Creating 2D Geometry 124
 5.2.3 The PDE Modeler: A Step-by-Step Guide 126
 5.3 Thermal Modeling Using the MATLAB Script 136
 5.3.1 Model Creation 136
 5.3.2 Geometry
 5.3.2.1 2D Geometries 137
 5.3.2.2 3D Geometries 142
 5.3.3 Material Properties 145
 5.3.4 Analysis Type 147
 5.3.5 Heat Generation 147
 5.3.6 Boundary and Initial Conditions 148
 5.3.7 Mesh 149
 5.3.8 Solver Options 150
 5.3.9 Solution and Postprocessing 151
5.3.10 Verifying the Model Inputs 154
5.4 Summary of the Steps to Create a Thermal Model in MATLAB 155

Chapter 6 The MATLAB Heat Transfer Problem Case Studies 157
6.1 Case Study 1—Axisymmetric Pipe: Single-Domain, Steady-State Thermal Model 157
 6.1.1 Setup 157
 6.1.2 Results for Copper Pipe 163
 6.1.3 Results Comparison for Copper and PEX Pipes 166
6.2 Case Study 2—Axisymmetric Pipe: Multi-Domain, Steady-State Thermal Model 168
 6.2.1 Setup 168
 6.2.2 Results 170
 6.2.3 Validation by an Analytical Model 172
 6.2.4 Heat Loss Comparison 174
6.3 Case Study 3—Axisymmetric Pipe: Multi-Domain, Transient Thermal Model 176
 6.3.1 Setup 176
 6.3.2 Results 180
6.4 Case Study 4—Non-Axisymmetric Pipe: Transient Thermal Model with Spatial and Temporal Boundary Conditions 194
 6.4.1 Setup 194
 6.4.2 Results 201
6.5 Case Study 5—Combining the MATLAB Script and the PDE Modeler Application 204
 6.5.1 The PDE Modeler Script 205
 6.5.2 PDE Tool Script 216
End Notes 228

Chapter 7 The COMSOL Multiphysics Models 229
7.1 Heat Transfer Modeling Considerations 231
7.2 Creating a Model in COMSOL Multiphysics 232
7.3 Creating Geometry 235
 7.3.1 Using Elementary Geometric Entities 237
 7.3.2 Importing Geometry 239
7.4 Adding Materials 240
7.5 Adding or Revising Physics 240
7.6 Solution 241
7.7 The COMSOL LiveLink for MATLAB 242

Chapter 8 The COMSOL Heat Transfer Problem Case Studies 249
8.1 Modeling Heat Transfer in a Pipe—Overview of the Case Studies 250
8.1.1 Model Geometry 250
8.1.2 Material Properties 251
8.1.3 Model Physics 252
8.1.4 Boundary and Initial Conditions 252
8.1.5 Meshing 255
8.1.6 Solution Settings 256
8.2 Case Study 1—Pipe 257
 8.2.1 3D Model Setup and Results 257
 8.2.2 Validation—Comparison with 2D Pipe Model 267
8.3 Case Study 2—Internally-Finned Pipe 269
8.4 Case Study 3—Externally-Finned Pipe 275
8.5 Case Study 4—Internally-Externally-Finned Pipe 283
8.6 Case Study 5—Externally-Twisted-Finned (Rotini) Channelled Pipe 290
8.7 Comparison between Case Studies 1 to 5 297
End Note 300

Chapter 9 Exercises 301
9.1 Heat Transfer in a Pipe Exposed to the Solar Radiation 301
 9.1.1 Exercise 1—Constant Heat Flux and Single Surface 303
 9.1.2 Exercise 2—Constant Heat Flux and Multiple Surfaces 303
 9.1.3 Exercise 3—Spatially Variable Radiative Heat Flux 304
 9.1.4 Exercise 4—Variable Ambient Temperature 305
 9.1.5 Exercise 5—Variable Heat Convection Coefficient and Ambient Temperature 306
 9.1.6 Exercise 6—Temperature-Dependent Thermophysical and Ambient Properties 307
 9.1.7 Exercise 7—Non-Axisymmetric Model 308
9.2 Heat Transfer in Various Geometries 309
 9.2.1 Exercise 8—Heat Transfer from a Pipe with Extended Surfaces 309
 9.2.2 Exercise 9—Heat Transfer from a Pipe in a Heat Exchanger 309
 9.2.3 Exercise 10—Heat Transfer from a Solid Cylinder 310
 9.2.4 Exercise 11—Energy Absorbed in a Cavity 311
9.3 Modeling Approach Comparisons 312
 9.3.1 Exercise 12—The MATLAB Heat Transfer Problems Solved with COMSOL 312
 9.3.2 Exercise 13—The COMSOL Heat Transfer Problems Solved with MATLAB 312
 9.3.3 Exercise 14—The MATLAB and COMSOL Heat Transfer Problems Solved Analytically 313
Chapter 10 Lean Six Sigma Implementation 315
 10.1 Introduction to the Concepts 315
 10.2 Good Practices 320
 End Notes 323

Chapter 11 Conclusion 325
 11.1 Choice of FEA Tools 325
 11.2 Sustainable Designs 329
 11.3 Ethical Designs 331
 End Notes 334

Bibliography 335

Appendix A Mathematical Methods to Solve Heat and Wave Problems 339
 A.1 Analytical Approaches to Solve Heat Equations 339
 A.2 General Analytical Approaches 340
 A.2.1 Separation of Variables 340
 A.2.2 Variation of Parameters 342
 A.2.3 Duhamel's Theorem 342
 A.2.4 Complex Combinations 343
 A.2.5 Superposition 343
 A.2.6 Laplace Transform 344
 A.2.7 Integral Method 344
 A.2.8 Perturbation Method 345

Appendix B Governing Equations Summary 347

Appendix C List of Figures 353

Appendix D List of Tables 369

Index 371