Einleitung .. 1

Teil A Grundlagen der Chemie. Der Wasserstoff 3

Kapitel I Element und Verbindung .. 5
 1 Der reine Stoff ... 5
 1.1 Homogene und heterogene Systeme 5
 1.2 Zerlegung heterogener Systeme 6
 1.2.1 Zerlegung auf Grund verschiedener Dichten 6
 1.2.2 Zerlegung auf Grund verschiedener Teilchengrößen 7
 1.3 Zerlegung homogener Systeme 8
 1.3.1 Zerlegung auf physikalischem Wege 8
 Phasenscheidung durch Temperaturänderung (S. 8), Phasenscheidung durch Lösungs-
 mittel (S. 10), Phasenscheidung durch Chromatographie (S. 10)
 1.3.2 Zerlegung auf chemischem Wege 11

Kapitel II Atom und Molekül ... 15
 1 Atom- und Molekularlehre 15
 1.1 Massenverhältnisse bei chemischen Reaktionen. Der Atombegriff .. 15
 1.1.1 Experimentalfunde 15
 Gesetz von der Erhaltung der Masse (S. 15), Stöchiometrische Gesetze (S. 17)
 1.1.2 Dalton'sche Atommhphythese 19
 1.2 Volumenverhältnisse bei chemischen Reaktionen. Der Molekülbegriff 20
 1.2.1 Experimentalfunde 20
 1.2.2 Avogador'sche Molekülhypothese 21
 1.3 Wahl einer Bezugsgröße für die relativen Atom- und Molekülmassen 24
 1.3.1 Stoffmengen .. 24
 1.3.2 Äquivalentmengen 26
 1.3.3 Stoff- und Äquivalentkonzentrationen 27
 2 Atom- und Molekülmassenbestimmung 28
 2.1 Bestimmung relativer Molekülmassen 28
 2.1.1 Gasförmige Stoffe 28
 Zustandsgleichung idealer Gase (S. 28), Methoden der Molekülmassenbestimmung
 (S. 32)
2.1.2 Gelöste Stoffe .. 32
Aggregatzustände der Materie (S. 32), Zustandsdiagramme von Stoffen (S. 33), Zustandsgleichung gelöster Stoffe (S. 35), Methoden der Molekülmassenbestimmung (S. 37)

2.2 Bestimmung relativer Atommassen ... 38
2.2.1 Bestimmung über eine Massenanalyse von Verbindungen 38
2.2.2 Bestimmung über die spezifische Wärmekapazität von Verbindungen 40
Gasförmige Stoffe (S. 40), Feste Stoffe (S. 41)

2.3 Absolute Atom- und Molekülmassen ... 42

3 Die chemische Reaktion, Teil I .. 44
3.1 Der Materie-Umsatz bei chemischen Reaktionen 44
3.1.1 Chemische Reaktionsgleichungen .. 44
3.1.2 Einteilung chemischer Reaktionen .. 45
3.2 Der Energie-Umsatz bei chemischen Reaktionen 47
3.2.1 Gesamtumsatz an Energie .. 47
3.2.2 Umsatz an freier und gebundener Energie .. 49

Kapitel III Atom- und Molekülion ... 52
1 Ionenlehre .. 52
1.1 Die elektrolytische Dissoziation. Der Ionenbegriff 52
1.1.1 Experimentalbefunde: Mengenverhältnisse bei der elektrolytischen
Stoffauflösung .. 52
1.1.2 Arrhenius’sche Ionenhypothese .. 53
Einteilung der Elektrolyte (S. 53), Stärke der Elektrolyte (S. 55), Reaktionen der Elektrolyte (S. 56)
1.2 Die elektrolytische Zersetzung. Der Elektronen- und Protonenbegriff 58
1.2.1 Experimentalbefunde: Massenverhältnisse bei der elektrolytischen
Stoffabscheidung .. 58
1.2.2 Stoney’sche Elektronen- und Rutherford’sche Protonenhypothese 59
2 Ionenmassenbestimmung ... 62
2.1 Die Massenspektrometrie .. 62
2.2 Bestimmung relativer Ionenmassen. Der Isotopenbegriff 65
2.2.1 Qualitative Untersuchungen .. 65
2.2.2 Quantitative Untersuchungen .. 67
2.3 Lebensdauer instabiler Moleküle .. 68
3 Ionisierungs-, Dissoziations-, Atomisierungsenergie 69

Kapitel IV Das Periodensystem der Elemente, Teil I 73
1 Einordnung der Elemente in ein Periodensystem 74
Gekürztes Periodensystem (S. 74), Ungekürztes Periodensystem (S. 76)
2 Vergleichende Übersicht über die Elemente .. 77
Entdeckung der chemischen Elemente (S. 77), Verbreitung der chemischen Elemente (S. 78), Aufbau der Erdkugel (S. 79), Aufbau der Biosphäre (S. 79), Eigenschaften der chemischen Elemente (S. 80)

Kapitel V Der Atombau .. 82
1 Das Schalenmodell der Atome .. 82
1.1 Bausteine der Materie. Elementarteilchenbegriff 82
1.1.1 Die Nukleonen und andere Elementarteilchen 82
1.1.2 Die Quarks und andere Urbausteine ... 84
1.2 Der Atomkern ... 86
Inhalt

1.2.1 Bauprinzip ... 86
1.2.2 Nukleonenzustände und Stabilität ... 88
1.2.3 Durchmesser und Dichte der Atomkerne 89
1.3 Die Elektronenhülle ... 90
1.3.1 Bauprinzip ... 90
1.3.2 Elektronenconfiguration und Stabilität ... 92
1.3.3 Durchmesser von Atomen und Atomionen .. 99

2 Atomspektren ... 100
2.1 Die Bausteine des Lichts. Der Photonenbegriff 100
2.2 Elektronenspektren ... 103
2.2.1 Die optischen Spektren .. 105
2.2.2 Die Röntgen-Spektren .. 107
2.3 Photoelektronenspektren .. 109

Kapitel VI Der Molekülbau. Die chemische Bindung, Teil I 112
1 Die Elektronentheorie der Valenz .. 112
1.1 Verbindungen erster Ordnung .. 113
1.1.1 Die Metallbindung ... 113
Bindungsmechanismus und Eigenschaften der Metalle (S. 113), Metallwertigkeit, Metallgitterenergie und Metallatomradien (S. 114), Strukturen der Metalle (S. 115), Legierungen (S. 119)
1.1.2 Die Ionenbindung ... 120
Bindungsmechanismus und Eigenschaften der Ionenverbindungen (S. 120), Ionenwertigkeit (S. 121), Gitterenergie von Ionenkristallen (S. 122), Strukturen einiger Ionenkristalle (S. 124), Kristallgitter von Salzen und anderen Festkörpern (S. 127), Ionenradien (S. 128), Mischkristallbildung (S. 130)
1.1.3 Die Atombindung ... 131
Bindungsmechanismus und Eigenschaften der Atomverbindungen (S. 131), Atomwertigkeit (S. 132), Bindungsgrad, Bindungslänge und Atomradien (S. 135), Molekülgestalt und Bindungswinkel (S. 139), Bindungsenergie (S. 141)
1.1.4 Übergänge zwischen den Bindungsarten .. 143
Elektronegativität (S. 145), Dipolmoment der Moleküle (S. 147), Halbmetalle und Halbleiter (S. 148)
1.1.5 Übergänge zwischen Verbindungen und Elementen. Clusterverbindungen .. 149
1.2 Verbindungen höherer Ordnung .. 150
1.2.1 Die koordinative Bindung ... 151
1.2.2 Komplexbildung am Elektronendonator .. 151
1.2.3 Komplexbildung am Elektronendonatorakzeptor 154
1.2.4 Komplexbildung am Elektronenakzeptor .. 155
1.3 Assoziate von Molekülen .. 157
1.3.1 Die zwischenmolekulare Bindung .. 158
1.3.2 Wasserstoffbrücken-Assoziate .. 160
1.3.3 Charge-Transfer-Komplexe ... 165
1.4 Kolloiddisperse Systeme .. 166
Vergleich grob-, kolloid- und molekulardisperser Lösungen (S. 167), Beständigkeit kolloider Lösungen (S. 168)

2 Molekülspektren ... 170
2.1 Überblick ... 170
2.2 Farbe chemischer Stoffe .. 171
2.2.1 Allgemeines ... 171
2.2.2 Spezielles .. 174
Farbe von Atomen und Atomionen (S. 174), Farbe von Molekülionen
(S. 175), Farbe von Komplexen (S. 176), Farbe von Festkörpern (S. 176)

3 Laser und Anwendungen ... 177

4 Molekülsymmetrie .. 180
4.1 Symmetrieelemente und Symmetrieoperationen 181
4.2 Punktgruppen ... 182
4.3 Anwendungen ... 184

Kapitel VII Die Molekülmwandlung. Die chemische Reaktion, Teil II 186
1 Das chemische Gleichgewicht 186
1.1 Die Reaktionsgeschwindigkeit 187
1.1.1 Die „Hin“-Reaktion ... 187
1.1.2 Die „Rück“-Reaktion .. 189
1.1.3 Die Gesamtreaktion .. 192
1.2 Der Gleichgewichtszustand 193
1.2.1 Das Massenwirkungsgesetz 193
1.2.2 Das Verteilungsgesetz 195
1.2.3 Die elektrolytische Dissoziation 196
Allgemeines (S. 196), Dissoziation schwacher Säuren (S. 199)
1.3 Die Beschleunigung der Gleichgewichtseinstellung 202
1.3.1 Reaktionsbeschleunigung durch Katalysatoren 203
1.3.2 Reaktionsbeschleunigung durch Temperaturerhöhung 204
1.4 Die Verschiebung von Gleichgewichten 205
1.4.1 Qualitative Beziehungen 205
Das Prinzip von Le Chatelier (S. 205), Folgerungen des Prinzips von Le Chatelier
(S. 205)
1.4.2 Quantitative Anwendungsbeispiele 207
Die Hydrolyse (S. 207), Die Neutralisation (S. 209)
1.5 Heterogene Gleichgewichte 212
1.5.1 Fest-gasförmige Systeme 213
1.5.2 Fest-flüssige Systeme 214
2 Die Oxidation und Reduktion 217
2.1 Ableitung eines neuen Oxidations- und Reduktionsbegriffs 217
2.1.1 Das Redoxsystem .. 217
2.1.2 Die Oxidationsstufe .. 219
2.2 Die elektrochemische Spannungsreihe 220
2.2.1 Das Normalpotential 220
Allgemeines (S. 220), Normalpotentiale in saurer und basischer Lösung (S. 223), Re-
relative Stärke gebräuchlicher Oxidations- und Reduktionsmittel (S. 227)
2.2.2 Die Konzentrationsabhängigkeit des Einzelpotentials 229
Allgemeines (S. 229), Redoxkraft in saurer, neutraler und basischer Lösung (S. 232)
2.3 Die elektrolytische Zersetzung 234
2.4 Elektrische Batterien ... 237
3 Die Acidität und Basizität ... 240
3.1 Ableitung neuer Säure- und Basebegriffe 240
3.1.1 Brönsted-Säuren und -Basen 240
Aquasystem (S. 240), Protonenhaltige und protonenfreie Systeme (S. 242)
3.1.2 Lewis-Säuren und -Basen 244
3.2 Stärke von Brönsted-Säuren und -Basen 245
Kapitel VIII Der Wasserstoff und seine Verbindungen

1. **Das Element Wasserstoff**
 - **Vorkommen**
 - **Darstellung**
 - Wasserstoffgewinnung aus Wasser (S. 260), Wasserstoffgewinnung aus Kohlenwasserstoffen (S. 263), Reinigung und Transport von Wasserstoff (S. 263)
 - **Physikalische Eigenschaften**
 - **Chemische Eigenschaften**
 - Thermisches Verhalten (S. 265), Säure-Base-Verhalten (S. 266), Redox-Verhalten (S. 267)
 - **Verwendung, Brennstoffzellen**
 - **Besondere Formen des Wasserstoffs**
 - Atomarer Wasserstoff (S. 271), Leichter, schwerer, superschwerer Wasserstoff (S. 273), Ortho- und Parawasserstoff (S. 274)

2. **Verbindungen des Wasserstoffs (Überblick)**
 - **Grundlagen**
 - **Systematik**
 - **Stöchiometrie**
 - **Struktur und Bindung**
 - Salzartige Wasserstoffverbindungen (S. 280), Metallartige Wasserstoffverbindungen (S. 282), Kovalente Wasserstoffverbindungen (S. 283)
 - **Darstellung**
 - Elementwasserstoffgewinnung durch Hydrogenolyse (S. 285), Elementwasserstoffgewinnung durch Protolyse (S. 287), Elementwasserstoffgewinnung durch Hydridolyse (S. 288)
 - **Physikalische Eigenschaften**
 - **Chemische Eigenschaften**
 - Thermisches Verhalten (S. 290), Säure-Base-Verhalten (S. 292), Redox-Verhalten (S. 293)
 - **Verwendung, Metallhydrid-Nickel-Akkumulator**

Teil B Hauptgruppenelemente

Kapitel IX Hauptgruppenelemente (Repräsentative Elemente)

1. **Periodensystem (Teil II) der Hauptgruppenelemente**
2. **Elektronenkonfiguration der Hauptgruppenelemente**
3. **Einordnung der Hauptgruppenelemente in das Periodensystem**
4. **Trends einiger Eigenschaften der Hauptgruppenelemente**
 - Metallischer und nichtmetallischer Charakter (S. 302), Wertigkeit (S. 304), Allgemeine Reaktivität (S. 305), Periodizitäten innerhalb des Hauptsystems (S. 307)
Kapitel X Grundlagen der Molekülchemie .. 312
1 Strukturen der Moleküle ... 313
 1.1 Der räumliche Bau der Moleküle. Strukturvorhersagen mit dem VSEPR-Modell .. 313
 1.1.1 VSEPR-Regeln ... 314
 Ideale \((\beta)_nZ\alpha\)-Strukturen (S. 314), Reale \((\gamma)_nZ\alpha\)-Strukturen (S. 315)
 1.1.2 Anwendungen der VSEPR-Regeln 316
 1.1.3 Ausnahmen der VSEPR-Regeln ... 323
 1.2 Die Isomerie der Moleküle ... 325
2 Bindungsmodelle der Moleküle. Die chemische Bindung, Teil II 327
 2.1 Die Atomorbitale (AO) .. 327
 2.1.1 Das Wasserstoffatom .. 328
 Aufenthaltswahrscheinlichkeiten des Wasserstoffelektrons (S. 330), Wellenfunktionen des Wasserstoffelektrons (S. 334)
 2.1.2 Atome mit mehreren Elektronen 337
 2.1.3 Mehratomige Systeme (Moleküle) 339
 2.1.4 Relativistische Effekte .. 340
 2.2 Die Molekülorbitale (MO). Strukturvorhersagen mit dem LCAO-Modell 343
 2.2.1 Zweiatomige Moleküle ... 344
 Allgemeines (S. 344), Lineare Kombination von Atomorbitalen zu Molekülorbitalen (S. 347)
 2.2.2 Mehratomige Moleküle ... 355
 2.3 Die Hybridorbitale (HO). Strukturvorhersagen mit dem HO-Modell 361
 2.3.1 Allgemeines ... 361
 Gestalt der Hybridorbitale (S. 361), Strukturvorhersage mithilfe von Hybridorbitalen (S. 363)
 2.3.2 Struktur von Molekülen mit Einfachbindungen 364
 2.3.3 Struktur von Molekülen mit Mehrfachbindungen 368
3 Reaktionsmechanismen der Moleküle. Die chemische Reaktion, Teil III 371
 3.1 Die Geschwindigkeit chemischer Reaktionen 372
 3.1.1 Chemische Geschwindigkeitsgesetze 372
 3.1.2 Geschwindigkeiten chemischer Reaktionen 373
 Halbwertszeit chemischer Vorgänge (S. 374), Zeitmaßstab physikalischer und chemischer Vorgänge (S. 376)
 3.2 Der Mechanismus chemischer Reaktionen 380
 3.2.1 Isomerisierungen .. 382
 3.2.2 Dissoziationen und Assoziationen 384
 Dissoziationen und Rekombinationen (S. 384), Eliminierungen und Additionen (S. 387)
 3.2.3 Substitutionen ... 389
 Homolytische Substitutionsreaktionen (S. 389), Radikalkettenreaktionen (S. 390), Heterolytische Substitutionsreaktionen (S. 393), Nucleophile Substitutionsreaktionen (S. 394), Nucleophile Substitutionen an tetraedrischen und pseudo-tetraedrischen Zentren (S. 398)
 3.2.4 Die Erhaltung der Orbitalsymmetrie 402
4 Stereochemie der Moleküle .. 405
 4.1 Stereochemische Isomerie (Stereoisomerie) 406
 4.1.1 Enantiomerie .. 406
 Moleküle mit \textit{einem} Chiralitätszentrum (S. 408), Moleküle mit \textit{mehreren} Chiralitätszentren (S. 409)
Inhalt XVII

4.1.2 Diastereomerie .. 411

Isomere mit diastereomeren Konfigurationen (S. 412), Isomere mit diastereomeren Konformationen (S. 413)

4.2 Stereochemische Dynamik 414

4.2.1 Enantioselektive Reaktionen 414

4.2.2 Stereochemie chemischer Reaktionen 416

Kapitel XI Die Gruppe der Edelgase 417

1 Die Elemente Helium, Neon, Argon, Krypton, Xenon und Radon 417

Vorkommen (S. 417), Gewinnung (S. 418), Physikalische Eigenschaften (S. 419), Verwendung (S. 420), Chemische Eigenschaften (S. 421), Edelgase in Verbindungen (S. 422)

2 Die Verbindungen der Edelgase 422

2.1 Edelgashalogenide ... 422

2.2 Edelgasoxide und -fluoridoxide 426

2.3 Sonstige Edelgasverbindungen 428

Kapitel XII Die Gruppe der Halogene 430

1 Die Elemente Fluor, Chlor, Brom, Iod und Astat 430

1.1 Das Fluor .. 430

1.2 Das Chlor .. 433

Vorkommen (S. 433), Darstellung (S. 433), Physikalische Eigenschaften (S. 436), Chemische Eigenschaften (S. 437), Verwendung (S. 438)

1.3 Das Brom .. 438

1.4 Das Iod ... 440

1.5 Das Astat .. 443

1.6 Halogen-Ionen sowie Assoziate 443

Halogen-Kationen (S. 443), Halogen-Anionen (Halogenide) (S. 446), Halogen-Assoziate (S. 446)

1.7 Halogene in Verbindungen 447

2 Wasserstoffverbindungen der Halogene 448

Fluorwasserstoff (S. 448), Chlorwasserstoff (S. 452), Bromwasserstoff (S. 454), Iodwasserstoff (S. 455)

3 Interhalogene .. 457

Zweiatomige Interhalogene (S. 457), Mehratomige Interhalogene (S. 459), Interhalogen-Kationen und -Anionen (S. 461)

4 Sauerstoffsäuren der Halogane 463

4.1 Überblick ... 463

4.2 Sauerstoffsäure des Fluors 465

4.3 Sauerstoffsäuren des Chlors 466

Hypochlorige Säure HClO (S. 466), Chlorige Säure HClO₂ (S. 468), Chlorsäure HClO₃ (S. 469), Perchlorsäure HClO₄ (S. 471)

4.4 Sauerstoffsäuren des Broms 472

4.5 Sauerstoffsäuren des Iods 474

5 Oxide und Fluoridoxide der Halogene 478

5.1 Überblick ... 478

5.2 Sauerstoffverbindungen des Fluors 479

5.3 Oxide des Chlors .. 482

Dichloroxid Cl₂O (S. 482), Chlortioxid ClO₂ (S. 482), Weitere Chloroxide (S. 485)

5.4 Oxide des Broms .. 487

5.5 Oxide des Iods .. 488
5.6 Fluoridoxide des Chlors, Broms und Iods .. 490
6 Verbindungen der Halogene (Überblick) .. 492
6.1 Grundlagen .. 492
6.1.1 Systematik ... 492
6.1.2 Strukturverhältnisse .. 493
6.1.3 Bindungsverhältnisse .. 494
6.2 Darstellung ... 494
6.3 Eigenschaften und Verwendung .. 494

Kapitel XIII Die Gruppe der Chalkogene ... 497
1 Der Sauerstoff .. 497
1.1 Das Element Sauerstoff .. 498
1.1.1 Sauerstoff (Dioxygen) ... 498
Vorkommen (S. 498), Darstellung (S. 498), Physikalische Eigenschaften (S. 501), Chemische Eigenschaften (S. 501), Verwendung (S. 503)
1.1.2 Ozon (Trioxygen) ... 504
Darstellung (S. 504), Physikalische Eigenschaften (S. 505), Chemische Eigenschaften (S. 506), Verwendung (S. 507)
1.1.3 Sauerstoff-Ionen. Oxide .. 507
Sauerstoff-Kationen (S. 507), Sauerstoff-Anionen. Oxide (S. 508)
1.1.4 Kurzlebige Sauerstoffspezies ... 509
Singulett-Sauerstoff (S. 510), Farbe des Sauerstoffs (S. 511), Atomaer Sauerstoff (S. 513), Tetrapsauerstoff (S. 513)
1.1.5 Sauerstoff in Verbindungen .. 514
1.2 Die Atmosphäre .. 514
1.2.1 Bestandteile der Atmosphäre. Evolution der Erde 515
1.2.2 Der Kreislauf des Ozons .. 516
Bildung und Zerfall von Ozon in der mittleren und oberen Atmosphäre (S. 517), Bildung und Zerfall von Ozon in der unteren Atmosphäre (S. 518), Katalytischer Abbau von Ozon in der Atmosphäre (S. 519)
1.2.3 Chemie der Atmosphäre und ihre Umweltfolgen 520
1.3 Wasserstoffverbindungen des Sauerstoffs .. 524
1.3.1 Überblick .. 524
1.3.2 Wasser und die Hydrosphäre .. 525
Vorkommen (S. 525), Reinigung (S. 526), Physikalische Eigenschaften (S. 528), Strukturverhältnisse (S. 529), Chemische Eigenschaften (S. 530), Schweres und Superschwere Wasser (S. 533)
1.3.3 Wasserstoffperoxid .. 534
Darstellung (S. 534), Physikalische Eigenschaften und Struktur (S. 535), Chemische Eigenschaften (S. 535), Verwendung (S. 539), Salze von H₂O₂ (S. 539)
2 Der Schwefel ... 540
2.1 Das Element Schwefel .. 540
2.1.1 Vorkommen .. 540
2.1.2 Gewinnung .. 541
2.1.3 Physikalische Eigenschaften ... 543
Aggregatzustände des Schwefels (S. 543), Zustandsdiagramm des Schwefels. Phasenübergänge (S. 545)
2.1.4 Chemische Eigenschaften und Verwendung ... 547
2.1.5 Schwefel-Allotrope .. 550
Darstellung (S. 550), Strukturen (S. 551), Mechanistische Aspekte der S₆-Modifikationsumwandlungen (S. 554)
2.1.6 Schwefel-Ionen. Sulfide 554
Schwefel-Kationen (S. 554), Schwefel-Anionen. Sulfide (S. 556)
2.1.7 Schwefel in Verbindungen 557
2.2 Wasserstoffverbindungen des Schwefels 557
2.2.1 Schwefelwasserstoff (Sulfan) H₂S 557
2.2.2 Höhere Schwefelwasserstoffe (Polysulfane) H₂Sₙ 561
2.3 Halogenverbindungen des Schwefels 562
2.3.1 Überblick ... 562
2.3.2 Schwefelfluoride ... 564
2.3.3 Schwefelchloride, -bromide, -iodide 567
2.4 Oxide des Schwefels ... 569
2.4.1 Überblick ... 569
2.4.2 Schwefeldioxid SO₂ ... 570
2.4.3 Schwefeltrioxid SO₃ .. 573
2.4.4 Niedere Schwefeloxide .. 575
2.5 Sauerstoffsauren des Schwefels 577
2.5.1 Überblick ... 577
2.5.2 Schweflige Säure H₂SO₃ und Dischweflige Säure H₂S₂O₅ 580
2.5.3 Darstellung (S. 583), Physikalische Eigenschaften (S. 586), Strukturen (S. 586), Chemische Eigenschaften (S. 587), Verwendung (S. 590), Derivate (S. 590)
2.5.4 Niedere Schwefelsäuren H₂SO₃, H₂SO₂, H₂S₂O₃, H₂S₂O₅ 593
2.5.5 Dithionige Säure H₂S₂O₅ und Dithionsäure H₂S₂O₆ 594
2.5.6 Thioschwefelsäure H₂S₃O₃ 595
2.5.7 Polysulfanmonosulfonsäuren H₂SₙSO₃ und Polysulfandisulfonsäuren (Polythionsäuren) H₂SₙO₆ .. 598
2.5.8 Peroxomonoschwefelsäure H₂SO₅ und Peroxodischwefelsäure H₂S₂O₈ 600
2.6 Stickstoffverbindungen des Schwefels 601
2.6.1 Schwefelnitride ... 602
Tetraschwefeltetranitrid („Schwefelstickstoff“) S₄N₄ (S. 603), Weitere Schwefelnitride (S. 606)
2.6.2 Schwefelnitrid-Ionen .. 609
Schwefelnitrid-Kationen (S. 609), Schwefelnitrid-Anionen (S. 610)
2.6.3 Schwefelnitridhalogenide und -oxide 612
Schwefel-Stickstoff-Halogen-Verbindungen (S. 612), Schwefel-Stickstoff-Sauerstoff-
Verbindungen (S. 615)
3 Das Selen, Tellur und Polonium 617
3.1 Die Elemente Selen, Tellur, Polonium 617
3.1.1 Vorkommen ... 617
3.1.2 Darstellung ... 618
3.1.3 Physikalische Eigenschaften und Strukturen 618
3.1.4 Chemische Eigenschaften und Verwendung 619
3.1.5 Selen-, Tellur-, Polonium-Allotrope 621
3.1.6 Selen-, Tellur-, Polonium-Ionen. Chalkonide 622
Chalkogen-Kationen (S. 622), Chalkogen-Anionen. Chalkogenide (S. 624)
3.1.7 Selen, Tellur, Polonium in Verbindungen 626
3.2 Wasserstoffverbindungen des Selens, Tellurs, Poloniums 626
3.3 Halogenverbindungen des Selens, Tellurs, Poloniums 627
3.3.1 Überblick ... 627
3.3.2 Selenhalogenide .. 629
Kapitel XIV Die Stickstoffgruppe („Pentele“)

1 Der Stickstoff

1.1 Das Element Stickstoff
- Vorkommen
- Darstellung
- Physikalische Eigenschaften
- Chemische Eigenschaften und Verwendung
- Allotrope und ionogene Formen von Stickstoff. Nitride

1.2 Wasserstoffverbindungen des Stickstoffs
- Ammoniak NH_3
- Hydrazin N_2H_4
- Stickstoffwasserstoffsaure HN_3

1.3 Halogenverbindungen des Stickstoffs

1.4 Organische Verbindungen des Stickstoffs

<table>
<thead>
<tr>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3 Tellurhalogenide</td>
<td>631</td>
</tr>
<tr>
<td>3.4 Interchalkogene</td>
<td>634</td>
</tr>
<tr>
<td>3.4.1 Überblick</td>
<td>634</td>
</tr>
<tr>
<td>3.4.2 Selen-, Tellur-, Poloniumoxide</td>
<td>635</td>
</tr>
<tr>
<td>3.4.3 Selenium- und Telluroxide</td>
<td>637</td>
</tr>
<tr>
<td>3.4.4 Selen-, Tellur-, Poloniumoxide</td>
<td>638</td>
</tr>
<tr>
<td>3.5 Sauerstoffsäuren des Selen s, Tellurs, Poloniums</td>
<td>638</td>
</tr>
<tr>
<td>3.5.1 Überblick</td>
<td>638</td>
</tr>
<tr>
<td>3.5.2 Sauerstoffsäuren des Selens</td>
<td>639</td>
</tr>
<tr>
<td>3.5.3 Sauerstoffsäuren des Tellurs</td>
<td>642</td>
</tr>
<tr>
<td>3.5.4 Sauerstoffsäure des Poloniums</td>
<td>643</td>
</tr>
<tr>
<td>3.6 Stickstoff- und Kohlenstoffverbindungen des Selens und Tellurs</td>
<td>643</td>
</tr>
<tr>
<td>3.7 Organische Verbindungen des Selens und Tellurs</td>
<td>645</td>
</tr>
</tbody>
</table>

Kapitel XIV Die Stickstoffgruppe („Pentele“)

1 Der Stickstoff

1.1 Das Element Stickstoff
- Vorkommen
- Darstellung
- Physikalische Eigenschaften
- Chemische Eigenschaften und Verwendung
- Allotrope und ionogene Formen von Stickstoff. Nitride

1.2 Wasserstoffverbindungen des Stickstoffs
- Ammoniak NH_3
- Hydrazin N_2H_4
- Stickstoffwasserstoffsaure HN_3

1.3 Halogenverbindungen des Stickstoffs

<table>
<thead>
<tr>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3 Tellurhalogenide</td>
<td>631</td>
</tr>
<tr>
<td>3.4 Interchalkogene</td>
<td>634</td>
</tr>
<tr>
<td>3.4.1 Überblick</td>
<td>634</td>
</tr>
<tr>
<td>3.4.2 Selen-, Tellur-, Poloniumoxide</td>
<td>635</td>
</tr>
<tr>
<td>3.4.3 Selenium- und Telluroxide</td>
<td>637</td>
</tr>
<tr>
<td>3.4.4 Selen-, Tellur-, Poloniumoxide</td>
<td>638</td>
</tr>
<tr>
<td>3.5 Sauerstoffsäuren des Selen s, Tellurs, Poloniums</td>
<td>638</td>
</tr>
<tr>
<td>3.5.1 Überblick</td>
<td>638</td>
</tr>
<tr>
<td>3.5.2 Sauerstoffsäuren des Selens</td>
<td>639</td>
</tr>
<tr>
<td>3.5.3 Sauerstoffsäuren des Tellurs</td>
<td>642</td>
</tr>
<tr>
<td>3.5.4 Sauerstoffsäure des Poloniums</td>
<td>643</td>
</tr>
<tr>
<td>3.6 Stickstoff- und Kohlenstoffverbindungen des Selens und Tellurs</td>
<td>643</td>
</tr>
<tr>
<td>3.7 Organische Verbindungen des Selens und Tellurs</td>
<td>645</td>
</tr>
</tbody>
</table>

Kapitel XIV Die Stickstoffgruppe („Pentele“)

1 Der Stickstoff

1.1 Das Element Stickstoff
- Vorkommen
- Darstellung
- Physikalische Eigenschaften
- Chemische Eigenschaften und Verwendung
- Allotrope und ionogene Formen von Stickstoff. Nitride

1.2 Wasserstoffverbindungen des Stickstoffs
- Ammoniak NH_3
- Hydrazin N_2H_4
- Stickstoffwasserstoffsaure HN_3

1.3 Halogenverbindungen des Stickstoffs

<table>
<thead>
<tr>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3 Tellurhalogenide</td>
<td>631</td>
</tr>
<tr>
<td>3.4 Interchalkogene</td>
<td>634</td>
</tr>
<tr>
<td>3.4.1 Überblick</td>
<td>634</td>
</tr>
<tr>
<td>3.4.2 Selen-, Tellur-, Poloniumoxide</td>
<td>635</td>
</tr>
<tr>
<td>3.4.3 Selenium- und Telluroxide</td>
<td>637</td>
</tr>
<tr>
<td>3.4.4 Selen-, Tellur-, Poloniumoxide</td>
<td>638</td>
</tr>
<tr>
<td>3.5 Sauerstoffsäuren des Selen s, Tellurs, Poloniums</td>
<td>638</td>
</tr>
<tr>
<td>3.5.1 Überblick</td>
<td>638</td>
</tr>
<tr>
<td>3.5.2 Sauerstoffsäuren des Selens</td>
<td>639</td>
</tr>
<tr>
<td>3.5.3 Sauerstoffsäuren des Tellurs</td>
<td>642</td>
</tr>
<tr>
<td>3.5.4 Sauerstoffsäure des Poloniums</td>
<td>643</td>
</tr>
<tr>
<td>3.6 Stickstoff- und Kohlenstoffverbindungen des Selens und Tellurs</td>
<td>643</td>
</tr>
<tr>
<td>3.7 Organische Verbindungen des Selens und Tellurs</td>
<td>645</td>
</tr>
</tbody>
</table>

Kapitel XIV Die Stickstoffgruppe („Pentele“)

1 Der Stickstoff

1.1 Das Element Stickstoff
- Vorkommen
- Darstellung
- Physikalische Eigenschaften
- Chemische Eigenschaften und Verwendung
- Allotrope und ionogene Formen von Stickstoff. Nitride

1.2 Wasserstoffverbindungen des Stickstoffs
- Ammoniak NH_3
- Hydrazin N_2H_4
- Stickstoffwasserstoffsaure HN_3

1.3 Halogenverbindungen des Stickstoffs

<table>
<thead>
<tr>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3 Tellurhalogenide</td>
<td>631</td>
</tr>
<tr>
<td>3.4 Interchalkogene</td>
<td>634</td>
</tr>
<tr>
<td>3.4.1 Überblick</td>
<td>634</td>
</tr>
<tr>
<td>3.4.2 Selen-, Tellur-, Poloniumoxide</td>
<td>635</td>
</tr>
<tr>
<td>3.4.3 Selenium- und Telluroxide</td>
<td>637</td>
</tr>
<tr>
<td>3.4.4 Selen-, Tellur-, Poloniumoxide</td>
<td>638</td>
</tr>
<tr>
<td>3.5 Sauerstoffsäuren des Selen s, Tellurs, Poloniums</td>
<td>638</td>
</tr>
<tr>
<td>3.5.1 Überblick</td>
<td>638</td>
</tr>
<tr>
<td>3.5.2 Sauerstoffsäuren des Selens</td>
<td>639</td>
</tr>
<tr>
<td>3.5.3 Sauerstoffsäuren des Tellurs</td>
<td>642</td>
</tr>
<tr>
<td>3.5.4 Sauerstoffsäure des Poloniums</td>
<td>643</td>
</tr>
<tr>
<td>3.6 Stickstoff- und Kohlenstoffverbindungen des Selens und Tellurs</td>
<td>643</td>
</tr>
<tr>
<td>3.7 Organische Verbindungen des Selens und Tellurs</td>
<td>645</td>
</tr>
<tr>
<td>Chapter</td>
<td>Section</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Halogenderivate des Ammoniaks</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Halogenderivate des Hydrazins und Diimins</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Halogenderivate der Stickstoffwasserstoffsaure (Halogenazide)</td>
</tr>
<tr>
<td>1.4</td>
<td>Oxide des Stickstoffs</td>
</tr>
<tr>
<td>1.4.1</td>
<td></td>
</tr>
<tr>
<td>1.4.2</td>
<td></td>
</tr>
<tr>
<td>1.4.3</td>
<td></td>
</tr>
<tr>
<td>1.4.4</td>
<td></td>
</tr>
<tr>
<td>1.4.5</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>Sonstige Stickstoffoxide</td>
</tr>
<tr>
<td>1.5.1</td>
<td></td>
</tr>
<tr>
<td>1.5.2</td>
<td></td>
</tr>
<tr>
<td>1.5.3</td>
<td></td>
</tr>
<tr>
<td>1.5.4</td>
<td></td>
</tr>
<tr>
<td>1.5.5</td>
<td></td>
</tr>
<tr>
<td>1.5.6</td>
<td></td>
</tr>
<tr>
<td>1.5.7</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Das Element Phosphor</td>
</tr>
<tr>
<td>2.1.1</td>
<td></td>
</tr>
<tr>
<td>2.1.2</td>
<td></td>
</tr>
<tr>
<td>2.1.3</td>
<td></td>
</tr>
<tr>
<td>2.1.4</td>
<td></td>
</tr>
<tr>
<td>2.1.5</td>
<td></td>
</tr>
<tr>
<td>2.1.6</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Wasserstoffverbindungen des Phosphors</td>
</tr>
<tr>
<td>2.2.1</td>
<td></td>
</tr>
<tr>
<td>2.2.2</td>
<td></td>
</tr>
<tr>
<td>2.2.3</td>
<td></td>
</tr>
<tr>
<td>2.2.4</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Halogenverbindungen des Phosphors</td>
</tr>
<tr>
<td>2.4</td>
<td>Chalkogenverbindungen des Phosphors</td>
</tr>
<tr>
<td>2.5</td>
<td>Sauerstoffsaure des Phosphors</td>
</tr>
</tbody>
</table>
2.5.1 Überblick .. 789
2.5.2 Phosphinsäure H₃PO₂ .. 793
2.5.3 Phosphonsäure H₃PO₃ .. 794
2.5.4 Phosphorsäure H₃PO₄ .. 795
 Darstellung (S. 795), Physikalische Eigenschaften und Struktur (S. 796), Chemische
 Eigenschaften (S. 797), Salze und Phosphatdünger (S. 798), Derivate (S. 801)
2.5.5 Kondensierte Phosphorsäuren 804
 Oligophosphorsäuren (S. 805), Polyphosphorsäuren (S. 807), Phosphate in der Natur
 (S. 808), Derivate kondensierter Phosphorsäuren (S. 809)
2.5.6 Niedere Phosphorsäuren .. 809
2.5.7 Peroxophosphorsäuren ... 811
2.6 Stickstoffverbindungen des Phosphors 811
2.6.1 Überblick .. 811
2.6.2 Phosphonitril .. 812
2.6.3 Imino- und Nitridophosphorane (Phosph(V)-azene, -azine) 814
2.6.4 Iminophosphane (Phosph(III)-azene) 816
2.6.5 Aminophosphane, -phosphorane (Phosph(III und V)-azane) 816
2.7 Organische Verbindungen des Phosphors 817
 Überblick (S. 817), Organophosphane und -phosphoniumsalze (S. 818), Phospha-
 alkene und Phosphaalkine (S. 819), Organophosphane (S. 821)

3 Das Arsen, Antimon und Bismut 822
3.1 Die Elemente Arsen, Antimon, Bismut 822
3.1.1 Vorkommen .. 822
3.1.2 Darstellung .. 823
3.1.3 Physikalische Eigenschaften und Strukturen 824
3.1.4 Chemische Eigenschaften und Verwendung 826
3.1.5 Verwendung, Legierungen 827
3.1.6 Allotrope und ionogene Formen von Arsen, Antimon, Bismut. Pentelide 828
 Allotrope (S. 828), Kationen (S. 828), Anionen. Arsenide, Antimonide, Bismutide
 (S. 829)
3.1.7 Arsen, Antimon und Bismut in Verbindungen 829
3.2 Wasserstoffverbindungen des Arsens, Antimons, Bismuts 829
3.3 Halogenverbindungen des Arsens, Antimons, Bismuts 832
3.3.1 Überblick .. 832
3.3.2 Trihalogenide EX₃ .. 834
3.3.3 Pentahalogenide EX₅ ... 837
3.3.4 Niedrigwertige Halogenide EX<₃ 838
3.4 Chalkogenverbindungen des Arsens, Antimons, Bismuts 839
3.4.1 Überblick .. 839
3.4.2 Oxide und Sauerstoßsäuren des Arsens 841
3.4.3 Sulfide und Thiosäuren des Arsens 845
3.4.4 Oxide und Sauerstoßsäuren des Antimons 847
3.4.5 Sulfide und Thiosäuren des Antimons 849
3.4.6 Oxide und Sulfide, Säuren und Basen des Bismuts 850
3.5 Interpentèle ... 852
3.6 Organische Verbindungen des Arsens, Antimons, Bismuts 853
3.6.1 Überblick .. 853
 Organylarsane, -stibane, -bismutane und Derivate R,EX₃₋ₙ (S. 854), Organylarsorane,
 -stiborane, -bismorane und Derivate R,EX₃₋ₙ (S. 855), Höhere gesättigte Orga-
 nylarsane, -stibane, -bismutane (S. 857), Ungesättigte Organylarsane, -stibane,
 -bismutane (S. 859)
Kapitel XV Die Kohlenstoffgruppe („Tetrale“) ... 861
1 Der Kohlenstoff ... 861
 1.1 Das Element Kohlenstoff .. 862
 1.1.1 Vorkommen ... 862
 1.1.2 Gewinnung, Physikalische Eigenschaften, Strukturen, Verwendung 863
 Überblick (S. 863), Graphit und graphitischer Kohlenstoff (S. 864),
 Diamant (S. 868), Fullerene (S. 870), Kohlenstoff-Nanoröhren (S. 876)
 1.1.3 Chemische Eigenschaften .. 877
 Allgemeines (S. 877), Graphitverbündungen (S. 879), Fullerenerverbündungen (S. 881),
 Verbindungen der Kohlenstoff-Nanoröhren (S. 883)
 1.1.4 Kohlenstoff-Ionen. Carbide ... 884
 Überblick (S. 884), Carbide (S. 884)
 1.1.5 Kohlenstoff in Verbindungen ... 886
 1.2 Wasserstoffverbindungen des Kohlenstoffs 887
 1.3 Halogenverbindungen des Kohlenstoffs 890
 1.4 Chalkogenverbindungen des Kohlenstoffs 892
 1.4.1 Überblick .. 892
 1.4.2 Kohlenstoffdioxid (Kohlendioxid) CO₂ 893
 1.4.3 Kohlenstoffmonoxid (Kohlenmonoxid, Kohlenoxid) CO 896
 1.4.4 Kohlenstoffdisulfid CS₂, Kohlenstoffdioxid sulfid COS 900
 1.4.5 Sonstige Kohlenstoffoxide und -sulfide 901
 1.4.6 Kohlenstoffsiloxane und -tellureide 903
 1.5 Chalkogensäuren des Kohlenstoffs 903
 1.5.1 Überblick .. 903
 1.5.2 Die Kohlensäure .. 906
 1.5.3 Einige weitere Kohlenstoff-Chalkogensäuren 908
 1.5.4 Fette und Kohlenhydrate .. 909
 1.6 Stickstoffverbindungen des Kohlenstoffs 910
 1.6.1 Überblick .. 910
 1.6.2 Kohlenstoffnitride, Cyanverbindungen 911
 1.6.3 α-Aminosäuren, Proteine, Nucleobasen, Nucleotide 914
 1.6.4 Evolution des Lebens .. 915
 1.7 Metallorganische Verbindungen .. 916
 Verbindungsbestandteile (S. 916•), Verbindungstypen (S. 917•)

2 Das Silicium ... 918
 2.1 Das Element Silicium .. 918
 2.1.1 Vorkommen .. 918
 2.1.2 Darstellung .. 919
 2.1.3 Physikalische Eigenschaften und Strukturen 921
 2.1.4 Chemische Eigenschaften .. 922
 2.1.5 Verwendung, Chips .. 923
 2.1.6 Silicium-Ionen. Silicide ... 923
 Überblick (S. 923), Silicide (S. 924)
 2.1.7 Zintl-Phasen .. 925
 2.1.8 Silicium in Verbindungen .. 927
 Oxidationsstufen und Koordinationszahlen (S. 927), Vergleich von Silicium und Kohlenstoff (S. 928)
 2.2 Wasserstoffverbindungen des Siliciums 936
 Überblick (S. 936), Monosilan SiH₃ (S. 937), Höhere gesättigte Silane SiₙH₂ₙ₊₁ (S. 940),
 Silylen SiH₂ (S. 942), Ungesättigte Silane (S. 942)
2.3 Halogenverbindungen des Siliciums .. 944
Überblick (S. 944), Siliciumtetrahalogenide (Tetrahalogensilane) SiX₄ (S. 945), Disili-
ciumhexahalogenide (Hexahalogensilane) Si₃X₆ (S. 948), Höhere Siliciumhalogeni-
des SiₙXₙ₊₄ (S. 949), Dihalogenwüsten (Siliciumdihalogenide) SiX₂ (S. 949)
2.4 Chalkogenverbindungen des Siliciums ... 949
Siliciumdioxid SiO₂ (S. 950), Siliciummonoxid SiO (S. 953), Sonstige Siliciumchalko-
genide (S. 954)
2.5 Sauerstoffsäuren des Siliciums. Silicate ... 955
2.5.1 Überblick ... 955
2.5.2 Kieselsäuren ... 959
Monokieselsäure H₄SiO₄ (S. 959), Polykieselsäuren (S. 961)
2.5.3 Natürliche Silicate .. 962
Insel-, Gruppen- und Ringsilicate (S. 963), Ketten- und Bandsilicate („Inosilicate“)
(S. 964), Schichtsilicate („Phyllosilicate“) (S. 965), Gerüstsilicate („Tectosilicate“)
(S. 970)
2.5.4 Technische Silicate .. 973
Alkalisilicate (S. 974), Gläser (S. 974), Tonwaren (Tonkeramik) (S. 979)
2.6 Nitride und Carbide des Siliciums ... 982
2.7 Organische Verbindungen des Siliciums .. 985
Überblick (S. 985•), Organylmonosilane und Derivate (S. 986•), Silicone (S. 992•),
Höhere Organylgermane (Organyloligosilane) (S. 994•), Organylsilylene (S. 995•), Un-
gesättigte Organylgermane (S. 997•)
3 Das Germanium, Zinn und Blei .. 1002
3.1 Die Elemente Germanium, Zinn, Blei ... 1002
3.1.1 Vorkommen ... 1003
3.1.2 Darstellung ... 1003
3.1.3 Physikalische Eigenschaften und Strukturen 1004
3.1.4 Chemische Eigenschaften ... 1005
3.1.5 Verwendung, Legierungen .. 1006
3.1.6 Alltrope und ionogene Formen von Germanium, Zinn, Blei 1007
Überblick (S. 1007), Germanide, Stannide, Plumbide (S. 1007)
3.1.7 Germanium, Zinn und Blei in Verbindungen 1009
3.2 Wasserstoffverbindungen des Germaniums, Zins, Bleis 1009
3.3 Halogenverbindungen des Germaniums, Zins, Bleis 1011
3.3.1 Überblick ... 1011
3.3.2 Dihalogenide EX₂ ... 1013
3.3.3 Tetrahalogenide EX₄ ... 1015
3.4 Chalkogenverbindungen des Germaniums, Zins, Bleis 1016
3.4.1 Überblick ... 1016
3.4.2 Oxide und Sulfide, Säuren und Basen des Germaniums 1018
3.4.3 Oxide und Sulfide, Säuren und Basen des Zins 1020
3.4.4 Oxide und Sulfide, Säuren und Basen des Bleis 1022
3.4.5 Der Bleiakkumulator („Bleiakku“) 1026
3.5 Organische Verbindungen des Germaniums, Zins, Bleis 1028
Überblick (S. 1028•), Organylgermane, -stannane, -plumbane und Derivate
(S. 1029•), Höhere Organylgermane, -stannane und -plumbane (S. 1033•), Organyl-
ermylene, -stannylene, -plumbylene und Derivate (S. 1035•), Ungesättigte Organyl-
germane, -stannane und -plumbane und Derivate (S. 1038•)
XXVI Inhalt

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitennummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.7</td>
<td>Aluminium in Verbindungen</td>
<td>1144</td>
</tr>
<tr>
<td>2.2</td>
<td>Wasserstoffverbindungen des Aluminums</td>
<td>1145</td>
</tr>
<tr>
<td></td>
<td>Darstellung (S. 1146), Eigenschaften (S. 1146), Tetrahydridaluminate (S. 1149)</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Halogenverbindungen des Aluminums</td>
<td>1150</td>
</tr>
<tr>
<td></td>
<td>Überblick (S. 1150), Aluminiumtrihalogenide AlX_3 (S. 1151), Aluminiumsubhalogenide (S. 1153)</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Sauerstoffverbindungen des Aluminums</td>
<td>1156</td>
</tr>
<tr>
<td></td>
<td>Überblick (S. 1156), Aluminiumhydroxide; Olation und Oxolation (S. 1156), Aluminiumoxide (S. 1160), Aluminate (S. 1162), Aluminiumsalze (S. 1164)</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Sonstige einfache Aluminiumverbindungen</td>
<td>1166</td>
</tr>
<tr>
<td>2.6</td>
<td>Organische Verbindungen des Aluminums</td>
<td>1167</td>
</tr>
<tr>
<td></td>
<td>Überblick (S. 1167), Aluminiumtriorganyle und Derivate (S. 1168), Aluminiummonooorganyle und Derivate (S. 1172), Oligoaluminiumorganyle und Derivate (S. 1174)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Das Gallium, Indium und Thallium</td>
<td>1178</td>
</tr>
<tr>
<td>3.1</td>
<td>Die Elemente Gallium, Indium, Thallium</td>
<td>1178</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Vorkommen</td>
<td>1178</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Darstellung</td>
<td>1179</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Physikalische Eigenschaften und Strukturen</td>
<td>1180</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Chemische Eigenschaften und Verwendung</td>
<td>1181</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Allotrope und ionogene Formen von Gallium, Indium, Thallium. Trielide</td>
<td>1182</td>
</tr>
<tr>
<td></td>
<td>Überblick (S. 1182), Gallide, Indide, Thallide (S. 1183)</td>
<td></td>
</tr>
<tr>
<td>3.1.6</td>
<td>Gallium, Indium und Thallium in Verbindungen</td>
<td>1185</td>
</tr>
<tr>
<td>3.2</td>
<td>Wasserstoffverbindungen des Galliums, Indiums, Thalliums</td>
<td>1186</td>
</tr>
<tr>
<td>3.3</td>
<td>Halogenverbindungen des Galliums, Indiums, Thalliums</td>
<td>1190</td>
</tr>
<tr>
<td></td>
<td>Überblick (S. 1190), Triel(III)-halogenide (S. 1190), Triel(II)-halogenide (S. 1192), Weitere gemisch-valente Trihalogenide (S. 1192), Triel(I)-halogenide (S. 1193)</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Chalkogenverbindungen des Galliums, Indiums, Thalliums</td>
<td>1194</td>
</tr>
<tr>
<td></td>
<td>Überblick (S. 1194), Trielhydroxide (S. 1194), Trieloxide (S. 1196) Trielsulfide, -selene, -telluride (S. 1197)</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Pentelverbindungen des Galliums, Indiums, Thalliums</td>
<td>1198</td>
</tr>
<tr>
<td>3.6</td>
<td>Organische Verbindungen des Galliums, Indiums, Thalliums</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>Überblick (S. 1200), Organylgallane, -indane, -thallane ER, und Derivate (S. 1201), Organylgallylene, -indylenes, -thallylene und Derivate (S. 1202), Ungesättigte Organylgallane, -indane, -thallane und Derivate (S. 1205), Höhere Organyltrielane (,,Oligotrielane“) und Derivate (S. 1206)</td>
<td></td>
</tr>
<tr>
<td>Kapitel XVII</td>
<td>Die Gruppe der Erdalkalimetalle</td>
<td>1215</td>
</tr>
<tr>
<td>1</td>
<td>Das Beryllium</td>
<td>1215</td>
</tr>
<tr>
<td>1.1</td>
<td>Das Element Beryllium</td>
<td>1215</td>
</tr>
<tr>
<td></td>
<td>Vorkommen (S. 1215), Darstellung (S. 1216), Eigenschaften (S. 1216), Verwendung, Legierungen (S. 1217), Beryllium in Verbindungen (S. 1217)</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Anorganische Verbindungen des Berylliums</td>
<td>1219</td>
</tr>
<tr>
<td></td>
<td>Wasserstoffverbindungen des Berylliums (S. 1219), Halogenverbindungen des Berylliums (S. 1220), Chalkogenverbindungen des Berylliums (S. 1221), Sonstige einfache Berylliumverbindungen (S. 1222), Berylliumsalze von Oxosäuren (S. 1222)</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Organische Verbindungen des Berylliums</td>
<td>1223</td>
</tr>
<tr>
<td>2</td>
<td>Das Magnesium</td>
<td>1225</td>
</tr>
<tr>
<td>2.1</td>
<td>Das Element Magnesium</td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td>Vorkommen (S. 1225), Darstellung (S. 1225), Eigenschaften (S. 1226), Verwendung, Legierungen, Magnesiumbatterie (S. 1226), Magnesium in Verbindungen (S. 1227)</td>
<td></td>
</tr>
</tbody>
</table>
2.2 Anorganische Verbindungen des Magnesiums

Wasserstoffverbindungen des Magnesiums (S. 1228), Halogenverbindungen des Magnesiums (S. 1229), Chalkogenverbindungen des Magnesiums (S. 1230), Sonstige einfache Magnesiumverbindungen (S. 1231), Magnesiumsalze von Oxosäuren (S. 1232), Magnesiumkomplexe, Magnesium in der Biosphäre (S. 1232)

2.3 Organische Verbindungen des Magnesiums

Das Calcium, Strontium, Barium und Radium

3.1 Die Elemente Calcium, Strontium, Barium, Radium

3.1.1 Vorkommen .. 1236
3.1.2 Darstellung .. 1238
3.1.3 Physikalische Eigenschaften 1238
3.1.4 Chemische Eigenschaften, Verwendung 1238
3.1.5 Erdalkalimetalle in Verbindungen 1239
3.2 Anorganische Verbindungen des Calciums, Strontiums, Bariums, Radiums 1240
3.2.1 Wasserstoffverbindungen der Erdalkalimetalle 1240
3.2.2 Halogenverbindungen der Erdalkalimetalle 1240
3.2.3 Chalkogenverbindungen der Erdalkalimetalle 1243
3.2.4 Sonstige einfache Erdalkalimetallverbindungen 1245
Stickstoffverbindungen der Erdalkalimetalle (S. 1245), Kohlenstoffverbindungen der Erdalkalimetalle (S. 1247)
3.2.5 Erdalkalimetall-Salze von Oxosäuren 1248
3.2.6 Erdalkalimetallkomplexe 1253
3.3 Organische Verbindungen der Erdalkalimetalle 1254
3.4 Mörtel .. 1255
3.4.1 Luftmörtel .. 1256
3.4.2 Wassermörtel .. 1257

Kapitel XVIII Die Gruppe der Alkalimetalle

1 Das Lithium .. 1259
1.1 Das Element Lithium ... 1259
Vorkommen (S. 1259), Darstellung (S. 1260), Eigenschaften (S. 1260), Verwendung, Legierungen, Lithiumbatterien (S. 1260), Lithium in Verbindungen (S. 1261)
1.2 Anorganische Verbindungen des Lithiums 1262
Wasserstoffverbindungen des Lithiums (S. 1262), Halogenverbindungen des Lithiums (S. 1262), Chalkogenverbindungen des Lithiums (S. 1263), Sonstige einfache Lithiumverbindungen (S. 1263), Lithiumsalze von Oxosäuren (S. 1264)
1.3 Organische Verbindungen des Lithiums 1264

2 Das Natrium, Kalium, Rubidium, Cäsium und Francium 1270
2.1 Die Elemente Natrium, Kalium, Rubidium, Cäsium, Francium 1270
2.1.1 Vorkommen .. 1270
2.1.2 Darstellung .. 1272
2.1.3 Physikalische Eigenschaften 1273
2.1.4 Chemische Eigenschaften 1275
2.1.5 Verwendung, Natriumbatterien 1276
2.1.6 Erdalkalimetalle in Verbindungen 1277
2.2 Anorganische Verbindungen des Natriums, Kaliums, Rubidiums, Cäsiums, Franciums .. 1279
2.2.1 Wasserstoffverbindungen der Alkalimetalle 1279
2.2.2 Halogenverbindungen der Alkalimetalle 1280
2.2.3 Chalkogenverbindungen der Alkalimetalle 1283
2.2.4 Sonstige einfache Alkalimetallverbindungen 1287
2.2.5 Erdalkalimetall-Salze von Oxosäuren 1288
2.2.6 Alkalimetallkomplexe, Alkalimetalle in der Biosphäre 1292
2.3 Organische Verbindungen der Alkalimetalle ... 1296

Teil C Nebengruppenelemente ... 1301

Kapitel XIX Nebengruppenelemente (Äußere Übergangsmetalle) 1303
 1 Periodensystem (Teil III) der Nebengruppenelemente 1303
 1.1 Elektronenkonfiguration der Nebengruppenelemente 1303
 1.2 Einordnung der Nebengruppenelemente in das Periodensystem 1305
 2 Trends einiger Eigenschaften der Nebengruppenelemente 1307
 Wertigkeit (S. 1308), Analogien und Diskrepanzen zwischen Haupt- und Nebensystem (S. 1309), Periodizitäten innerhalb des Nebensystems (S. 1311)

Kapitel XX Grundlagen der Komplexchemie ... 1315
 1 Bau und Stabilität der Übergangsmetallkomplexe 1316
 1.1 Die Komplexbestandteile .. 1316
 1.1.1 Komplexliganden ... 1316
 Einzähnige Liganden (S. 1318), Mehrzähnige Liganden: Chelatliganden (S. 1320)
 1.1.2 Komplexzentren ... 1320
 Einatomige Metallzentren (S. 1322), Mehratomige Metallzentren: Metallcluster (S. 1324)
 1.2 Die Komplexstabilität ... 1327
 1.2.1 Komplexbildungs- und Dissoziationskonstanten 1328
 1.2.2 Der Chelat-Effekt ... 1330
 1.2.3 Redoxstabilität .. 1332
 1.3 Der räumliche Bau der Komplexe ... 1333
 1.4 Die Isomerie der Komplexe .. 1343
 1.4.1 Konstitutionsisomerie der Komplexe ... 1343
 1.4.2 Stereoisomerie der Komplexe .. 1344
 2 Bindungsmodelle der Übergangsmetallkomplexe. Die chemische Bindung,
 Teil III .. 1348
 2.1 Valenzstruktur-Theorie der Komplexe ... 1349
 2.1.1 Zusammensetzung und Stabilität von Komplexen 1349
 2.1.2 Struktur und magnetisches Verhalten von Komplexen 1352
 2.2 Ligandenfeld-Theorie der Komplexe ... 1354
 2.2.1 Energieaufspaltung der d-Orbitale im Ligandenfeld. Magnetisches Verhalten der Komplexe .. 1355
 Allgemeines (S. 1355), Oktaedrisches Ligandenfeld (S. 1356), Tetraedrisches und kubisches Ligandenfeld (S. 1360), Quadratisches und quadratisch-pyramidales Ligandenfeld (S. 1361), Quadratisch-pyramidales sowie trigonal- oder pentagonal-bipyramidales Ligandenfeld (S. 1362)
 2.2.2 Ligandenfeldstabilisierungsentnergie. Stabilität und Struktur der Komplexe 1363
 Allgemeines (S. 1363), LFSE und Komplexstabilität (S. 1364), LFSE und Komplexstruktur (S. 1365), Jahn-Teller-Effekt und Komplexverzerrungen (S. 1367)
 2.2.3 Energieaufspaltung von Thermen im Ligandenfeld. Optisches Verhalten der Komplexe .. 1368
 Farbe von Komplexen (S. 1368), d→d-Übergänge (S. 1370), CT-Übergänge (S. 1374)
 2.3 Molekülorbital-Theorie der Komplexe ... 1375
 2.3.1 Molekülorbital schemata der Komplexe .. 1375
 Molekülorbite der Komplexe (S. 1375), Energie niveau-Schema der Molekülorbite oktaedrischer Komplexe (S. 1376)
Inhalt XXIX

2.3.2 Edelgasregel, 18-Elektronenregel ... 1378
2.3.3 Isolobal-Prinzip ... 1379

3 Reaktionsmechanismen der Übergangsmetallkomplexe. Die chemische Reaktion, Teil IV ... 1380
3.1 Nucleophile Substitutionsreaktionen der Komplexe 1381
3.1.1 Nucleophile Substitution an tetraedrischen Zentren 1382
3.1.2 Nucleophile Substitution an quadratisch-planaren Zentren 1382
3.1.3 Nucleophile Substitution an oktaedrischen Zentren 1385
3.2 Umlagerungsreaktionen der Komplexe 1392
3.3 Redoxreaktionen der Komplexe .. 1393
3.3.1 Elektronentransfer-Prozesse ... 1394
3.3.2 Redoxadditionen und -eliminierungen 1398

Kapitel XXI Einige Grundlagen der Festkörperchemie 1401
1 Synthese von Festkörpern ... 1403
 1.1 Überblick ... 1403
 1.2 Schmelz- und Erstarrungsdiagramme binärer Systeme („Phasendiagramme“) ... 1404
 Abscheidung reiner Stoffe (S. 1404), Abscheidung von Mischkristallen (S. 1406)
 1.3 Einige wichtige Legierungsphasen .. 1408
 Hume-Rothery-Phasen (S. 1408), Zintl-Phasen (S. 1408), Laves-Phasen (S. 1409), Nickelarsenid-Phasen (S. 1409)
 1.4 Transportreaktionen .. 1409
2 Einige Eigenschaften der Festkörper ... 1410
 2.1 Magnetische Eigenschaften der Festkörper („Magnetoochemie“) 1410
 2.1.1 Diamagnetismus und Paramagnetismus 1411
 Materie im Magnetfeld. Die magnetische Suszeptibilität (S. 1411), Atomistische Deutung der magnetischen Suszeptibilität (S. 1412)
 2.1.2 Ferromagnetismus, Ferrimagnetismus und Antiferromagnetismus 1417
 2.1.3 Ferro- und Antiferroelektrizität 1420
 2.2 Elektrische Eigenschaften der Festkörper 1420
 2.2.1 Leiter, Nichtleiter, Halbleiter ... 1421
 Metalle. Elektronische Leiter (S. 1421), Nichtmetalle. Elektronische Nichtleiter (S. 1422), Halbmetalle. Elektronische Halbleiter (S. 1423)
 2.2.2 Supraleiter ... 1425
 Konventionelle Supraleiter (S. 1426), Hochtemperatur-Supraleiter (S. 1428)
 3 Oberflächenreiche sowie nanostrukturierte Materialien 1429
 3.1 Der aktive Zustand fester Materie .. 1430
 3.2 Nanophasen-Materialien ... 1431

Kapitel XXII Die Kupfergruppe ... 1433
1 Das Kupfer ... 1433
 1.1 Das Element Kupfer .. 1433
 Vorkommen (S. 1433), Darstellung (S. 1434), Physikalische Eigenschaften (S. 1437), Chemische Eigenschaften (S. 1437), Verwendung, Legierungen (S. 1438), Kupfer in Verbindungen (S. 1439)
 1.2 Verbindungen des Kupfers .. 1440
1.2.1 Kupfer(I)-Verbindungen (d^{10}) .. 1440
 Wasserstoffverbindungen (S.1440), Halogen- und Pseudohalogenverbindungen
 (S.1441), Chalkogenverbindungen (S.1443), Pentel-, Tetrél-, Trielverbindungen
 (S.1444)

1.2.2 Kupfer(II)-Verbindungen (d^{9}) .. 1444
 Halogen- und Pseudohalogenverbindungen (S.1444), Chalkogenverbindungen
 (S.1446), Kupfer in der Biosphäre (S.1450)

1.2.3 Kupfer(III)- und Kupfer(IV)-Verbindungen (d^{8}, d^{7}) 1450

1.2.4 Organische Verbindungen des Kupfers .. 1451

2 Das Silber ... 1452

2.1 Das Element Silber ... 1452
 Vorkommen (S.1452), Darstellung (S.1453), Physikalische Eigenschaften (S.1454),
 Chemische Eigenschaften (S.1455), Verwendung, Legierungen (S.1455), Silber in
 Verbindungen (S.1456)

2.2 Verbindungen des Silbers ... 1457

2.2.1 Silber(I)-Verbindungen (d^{10}) .. 1457
 Wasserstoffverbindungen (S.1457), Halogen- und Pseudohalogenverbindungen
 (S.1457), Chalkogenverbindungen (S.1460), Pentel-, Tetrél-, Trielverbindungen
 (S.1461)

2.2.2 Silber(II)-Verbindungen (d^{9}) .. 1461

2.2.3 Silber(III)- und Silber(IV)-Verbindungen (d^{8}, d^{7}) 1463

2.2.4 Organische Verbindungen des Silbers .. 1463

2.3 Der photographische Prozess ... 1464

3 Das Gold ... 1466

3.1 Das Element Gold .. 1466
 Vorkommen (S.1466), Darstellung (S.1467), Physikalische Eigenschaften (S.1468),
 Chemische Eigenschaften (S.1468), Verwendung, Legierungen (S.1468), Gold in
 Verbindungen (S.1469), Vergleichende Betrachtungen (S.1470)

3.2 Verbindungen des Golds ... 1473

3.2.1 Gold(I)-Verbindungen (d^{10}) .. 1473
 Wasserstoffverbindungen (S.1473), Halogen- und Pseudohalogenverbindungen
 (S.1473), Chalkogenverbindungen (S.1475), Pentel-, Tetrél-, Trielverbindungen
 (S.1475)

3.2.2 Gold(II)-Verbindungen (d^{9}) .. 1475

3.2.3 Gold(III)-Verbindungen (d^{8}) .. 1476
 Halogen- und Pseudohalogenverbindungen (S.1476), Chalkogenverbindungen
 (S.1477)

3.2.4 Gold(IV)- und Gold(V)-Verbindungen (d^{7}, d^{6}) 1478

3.2.5 Niedrigwertige Goldverbindungen ... 1478

3.2.6 Organische Verbindungen des Golds ... 1481

Kapitel XXIII Die Zinkgruppe .. 1483

1 Das Zink und Cadmium .. 1483

1.1 Die Elemente Zink und Cadmium .. 1483
 Vorkommen (S.1483), Darstellung (S.1484), Physikalische Eigenschaften (S.1486),
 Chemische Eigenschaften (S.1487), Verwendung, Legierungen, Zinkbatterien
 (S.1488), Zink und Cadmium in Verbindungen (S.1488)

1.2 Verbindungen des Zinks und Cadmiums .. 1489

1.2.1 Zink(II)- und Cadmium(II)-Verbindungen (d^{10}) 1489
 Wasserstoffverbindungen (S.1489), Halogen- und Pseudohalogenverbindungen
 (S.1490), Chalkogenverbindungen (S.1491), Pentel-, Tetrél-, Trielverbindungen
 (S.1494), Zink in der Biosphäre (S.1495)
<table>
<thead>
<tr>
<th>Inhalt</th>
<th>XXXI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.2</td>
<td>Zink(I)- und Cadmium(I)-Verbindungen (d^{10}s^1)</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Organische Verbindungen des Zinks und Cadmiums</td>
</tr>
<tr>
<td>2</td>
<td>Das Quecksilber</td>
</tr>
<tr>
<td>2.1</td>
<td>Das Element Quecksilber</td>
</tr>
<tr>
<td></td>
<td>Vorkommen (S.1497), Darstellung (S.1498), Physikalische Eigenschaften (S.1499), Chemische Eigenschaften (S.1499), Verwendung, Amalgame (S.1500), Quecksilber in Verbindungen (S.1500), Vergleichende Betrachtungen (S.1501)</td>
</tr>
<tr>
<td>2.2</td>
<td>Verbindungen des Quecksilbers</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Quecksilber(I)-Verbindungen (d^{10}s^1)</td>
</tr>
<tr>
<td></td>
<td>Halogen- und Pseudohalogenverbindungen (S.1502), Chalkogenverbindungen (S.1503), Pentel-, Tetrel-, Trielverbindungen (S.1504)</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Quecksilber(II)-Verbindungen (d^{10})</td>
</tr>
<tr>
<td></td>
<td>Halogen- und Pseudohalogenverbindungen (S.1504), Chalkogenverbindungen (S.1507)</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Niedrigwertige Quecksilberverbindungen</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Organische Verbindungen des Quecksilbers</td>
</tr>
<tr>
<td>Kapitel XXIV Die Scandiumgruppe</td>
<td>1513</td>
</tr>
<tr>
<td>1</td>
<td>Die Elemente Scandium, Yttrium, Lanthan und Actinium</td>
</tr>
<tr>
<td></td>
<td>Vorkommen (S.1513), Darstellung (S.1514), Physikalische Eigenschaften (S.1515), Chemische Eigenschaften (S.1515), Verwendung, Legierungen (S.1515), Scandium, Yttrium, Lanthan und Actinium in Verbindungen (S.1516), Vergleichende Betrachtungen (S.1516)</td>
</tr>
<tr>
<td>2</td>
<td>Verbindungen des Scandiums, Yttriums, Lanthans und Actiniums</td>
</tr>
<tr>
<td></td>
<td>Wasserstoffverbindungen (S.1517), Halogenverbindungen (S.1517), Chalkogenverbindungen (S.1518), Pentel-, Tetrel-, Trielverbindungen (S.1519), Organische Verbindungen des Scandiums, Yttriums und Lanthans (S.1519)</td>
</tr>
<tr>
<td>Kapitel XXV Die Tiangruppe</td>
<td>1520</td>
</tr>
<tr>
<td>1</td>
<td>Das Titan</td>
</tr>
<tr>
<td>1.1</td>
<td>Das Element Titan</td>
</tr>
<tr>
<td></td>
<td>Vorkommen (S.1520), Darstellung (S.1521), Physikalische Eigenschaften (S.1522), Chemische Eigenschaften (S.1522), Verwendung, Legierungen (S.1523), Titan in Verbindungen (S.1523)</td>
</tr>
<tr>
<td>1.2</td>
<td>Verbindungen des Titans</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Titan(IV)-Verbindungen (d^0)</td>
</tr>
<tr>
<td></td>
<td>Wasserstoffverbindungen (S.1524), Halogen- und Pseudohalogenverbindungen (S.1524), Chalkogenverbindungen (S.1526)</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Titan(III)-Verbindungen (d^1)</td>
</tr>
<tr>
<td></td>
<td>Wasserstoffverbindungen (S.1528), Halogen- und Pseudohalogenverbindungen (S.1529), Chalkogenverbindungen (S.1529)</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Titan(II)-Verbindungen (d^2)</td>
</tr>
<tr>
<td></td>
<td>Wasserstoffverbindungen (S.1530), Halogenverbindungen (S.1530), Chalkogenverbindungen (S.1530), Pentel-, Tetrel-, Trielverbindungen (S.1531)</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Organische Verbindungen des Titans</td>
</tr>
<tr>
<td>2</td>
<td>Das Zirconium und Hafnium</td>
</tr>
<tr>
<td>2.1</td>
<td>Die Elemente Zirconium und Hafnium</td>
</tr>
<tr>
<td></td>
<td>Vorkommen (S.1533), Darstellung (S.1534), Physikalische Eigenschaften (S.1534), Chemische Eigenschaften (S.1534), Verwendung, Legierungen (S.1535), Zirconium und Hafnium in Verbindungen (S.1535), Vergleichende Betrachtungen (S.1535)</td>
</tr>
<tr>
<td>2.2</td>
<td>Verbindungen des Zirconiums und Hafniums</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Wasserstoffverbindungen</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Halogen- und Pseudohalogenverbindungen</td>
</tr>
</tbody>
</table>
XXXII Inhalt

2.2.3 Chalkogenverbindungen .. 1538
2.2.4 Pentel-, Tetr-, Trielverbindungen .. 1540
2.2.5 Organische Verbindungen des Zirconiums und Hafniums 1540
Zirconium- und Hafniunorganyle (S. 1540•), Katalytische Prozesse mit Beteiligung von Zr-Organyl en (S. 1541•)

Kapitel XXVI Die Vanadiumgruppe ... 1542
1 Das Vanadium .. 1542
1.1 Das Element Vanadium .. 1542
Vorkommen (S. 1542), Darstellung (S. 1543), Physikalische Eigenschaften (S. 1543), Chemische Eigenschaften (S. 1543), Verwendung, Legierungen (S. 1544), Vanadium in Verbindungen (S. 1544)
1.2 Verbindungen des Vanadiums ... 1545
1.2.1 Vanadium(V)-Verbindungen (d⁰) .. 1545
Halogenverbindungen (S. 1545), Chalkogenverbindungen (S. 1546)
1.2.2 Vanadium(IV)-Verbindungen (d¹) .. 1547
Halogen- und Pseudohalogenverbindungen (S. 1547), Chalkogenverbindungen (S. 1548)
1.2.3 Vanadium(III)- und Vanadium(II)-Verbindungen (d², d³) 1550
Wasserstoffverbindungen (S. 1550), Halogen- und Pseudohalogenverbindungen (S. 1550), Chalkogenverbindungen (S. 1551), Pentel-, Tetr-, Trielverbindungen (S. 1552)
1.2.4 Organische Verbindungen des Vanadiums 1552

2 Das Niobium und Tantal ... 1553
2.1 Die Elemente Niobium und Tantal ... 1553
Vorkommen (S. 1553), Darstellung (S. 1553), Physikalische Eigenschaften (S. 1554), Chemische Eigenschaften (S. 1554), Verwendung, Legierungen (S. 1554), Niobium und Tantal in Verbindungen (S. 1554), Vergleichende Betrachtungen (S. 1555)
2.2 Verbindungen des Niobiums und Tantals 1555
2.2.1 Wasserstoffverbindungen ... 1555
2.2.2 Halogen- und Pseudohalogenverbindungen 1555
2.2.3 Chalkogenverbindungen .. 1559
2.2.4 Pentel-, Tetr-, Trielverbindungen .. 1560
2.2.5 Organische Verbindungen des Niobiums und Tantals 1561

Kapitel XXVII Die Chromgruppe .. 1562
1 Das Chrom ... 1562
1.1 Das Element Chrom .. 1562
Vorkommen (S. 1562), Darstellung (S. 1563), Physikalische Eigenschaften (S. 1565), Chemische Eigenschaften (S. 1565), Verwendung, Legierungen (S. 1565), Chrom in Verbindungen (S. 1565)
1.2 Verbindungen des Chroms .. 1567
1.2.1 Chrom(VI)-Verbindungen (d⁰) .. 1567
1.2.2 Chrom(V)- und Chrom(IV)-Verbindungen (d¹, d²) 1571
Halogenverbindungen (S. 1571), Sauerstoffverbindungen (S. 1571)
1.2.3 Chrom(III)-Verbindungen (d³) .. 1573
Halogen- und Pseudohalogenverbindungen (S. 1573), Chalkogenverbindungen (S. 1574), Chrom(III)-Komplexe (S. 1576)
1.2.4 Chrom(II)-Verbindungen (d⁴) .. 1577
Wasserstoffverbindungen (S. 1577), Halogen- und Pseudohalogenverbindungen (S. 1577), Chalkogenverbindungen (S. 1578), Pentel-, Tetr-, Trielverbindungen (S. 1578), Chrom(II)-Komplexe (S. 1579)
Inhaltsverzeichnis XXXIII

2 Das Molybdän und Wolfram
2.1 Die Elemente Molybdän und Wolfram
- Vorkommen (S. 1582), Darstellung (S. 1583), Physikalische Eigenschaften (S. 1583), Chemische Eigenschaften (S. 1583), Verwendung, Legierungen (S. 1584), Molybdän und Wolfram in Verbindungen (S. 1584), Vergleichende Betrachtungen (S. 1585)

2 Verbindungen des Molybdäns und Wolframs
2.2 Wasserstoffverbindungen
- Wasserstoffverbindungen (S. 1586)

2.2.1 Wasserstoffverbindungen
- Wasserstoffverbindungen (S. 1586)

2.2.2 Halogen- und Pseudohalogenverbindungen
- Halogen- und Pseudohalogenverbindungen (S. 1587), Halogenide (S. 1587), Pseudohalogenide (S. 1590)

2.2.3 Chalkogenverbindungen
- Chalkogenverbindungen (S. 1590), Sauerstoffverbindungen (S. 1590), Molybdate(VI) und Wolframate(VI) (S. 1594), Sonstige Chalkogenide und Chalkogenokomplexe (S. 1600)

2.2.4 Pentel-, Tetrel-, Trielverbindungen
- Pentel-, Tetrel-, Trielverbindungen (S. 1601)

2.2.5 Molybdän- und Wolfram-Komplexe
- Molybdän- und Wolfram-Komplexe (S. 1602)

2.2.6 Organische Verbindungen des Molybdäns und Wolframs
- Organische Verbindungen des Molybdäns und Wolframs (S. 1605), Molybdän- und Wolframorganyle (S. 1605), Katalytische Prozesse unter Beteiligung von Mo- und W-organylen (S. 1606)

Kapitel XXVIII Die Mangangruppe
1 Das Mangan
1.1 Das Element Mangan
- Vorkommen (S. 1607), Darstellung (S. 1608), Physikalische Eigenschaften (S. 1608), Chemische Eigenschaften (S. 1608), Verwendung, Legierungen (S. 1609), Mangan in Verbindungen (S. 1609)

1.2 Verbindungen des Mangans
- Wasserstoffverbindungen (S. 1610), Halogen- und Pseudohalogenverbindungen (S. 1610), Chalkogenverbindungen (S. 1612), Pentel-, Tetrel-, Trielverbindungen (S. 1613), Mangan(II)-Komplexe (S. 1613)

1.2.2 Mangan(III)- und Mangan(IV)-Verbindungen (d^4, d^3)
- Halogen- und Pseudohalogenverbindungen (S. 1614), Mangan(III)- und Mangan(IV)-Komplexe (S. 1616)

1.2.3 Mangan(V)-, (VI)-, (VII)-Verbindungen (d^2, d^1, d^0)
- Organische Verbindungen des Mangans (S. 1619)

2 Das Technetium und Rhenium
2.1 Die Elemente Technetium und Rhenium
- Vorkommen (S. 1620), Darstellung (S. 1621), Physikalische Eigenschaften (S. 1622), Chemische Eigenschaften (S. 1622), Verwendung, Legierungen (S. 1622), Technetium und Rhenium in Verbindungen (S. 1622), Vergleichende Betrachtungen (S. 1623)

2.2 Verbindungen des Technetiums und Rheniums
- Wasserstoffverbindungen (S. 1624)

2.2.2 Halogen- und Pseudohalogenverbindungen
- Halogen- und Pseudohalogenverbindungen (S. 1625)

2.2.3 Chalkogenverbindungen
- Chalkogenverbindungen (S. 1628)

2.2.4 Pentel-, Tetrel-, Trielverbindungen
- Pentel-, Tetrel-, Trielverbindungen (S. 1631)

2.2.5 Technetium- und Rheniumkomplexe
- Technetium- und Rheniumkomplexe (S. 1631)

2.2.6 Organische Verbindungen des Technetiums und Rheniums
- Organische Verbindungen des Technetiums und Rheniums (S. 1632), Technetium- und Rheniumorganyle (S. 1632), Katalytische Prozesse unter Beteiligung von Re-organylen (S. 1634)
Kapitel XXIX Die Eisengruppe .. 1635

1 Das Eisen ... 1636

 1.1 Das Element Eisen .. 1636

 1.1.1 Vorkommen .. 1636

 1.1.2 Darstellung .. 1637

 Erzeugung von Roheisen (S. 1637), Gewinnung von Stahl (S. 1640)

 1.1.3 Physikalische Eigenschaften 1642

 1.1.4 Chemische Eigenschaften .. 1644

 1.1.5 Verwendung, Legierungen 1644

 1.1.6 Eisen in Verbindungen .. 1645

 1.2 Eisen(II)- und Eisen(III)-Verbindungen (d^6, d^3) 1647

 Wasserstoffverbindungen (S. 1647), Halogen- und Pseudohalogenverbindungen
 (S. 1647), Chalkogenverbindungen (S. 1652), Pentel-, Tetrel-, Trielverbindungen
 (S. 1659), Eisen(II)- und Eisen(III)-Komplexe (S. 1659), Eisen in der Biosphäre
 (S. 1661)

 1.2.2 Eisen(VI)-, (V)-, (IV)-Verbindungen (d^2, d^1, d^0) 1665

 1.2.3 Organische Verbindungen des Eisens 1666

2 Das Ruthenium und Osmium ... 1666

 2.1 Die Elemente Ruthenium und Osmium 1666

 Vorkommen (S. 1666), Darstellung (S. 1667), Physikalische Eigenschaften (S. 1667),
 Chemische Eigenschaften (S. 1667), Verwendung, Legierungen (S. 1667), Ruthenium
 und Osmium in Verbindungen (S. 1667), Vergleichende Betrachtungen (S. 1668)

 2.2 Verbindungen des Rutheniums und Osmiums 1668

 2.2.1 Wasserstoffverbindungen 1668

 2.2.2 Halogen- und Pseudohalogenverbindungen 1669

 2.2.3 Chalkogenverbindungen 1672

 2.2.4 Pentel-, Tetrel-, Trielverbindungen 1676

 2.2.5 Ruthenium- und Osmiumkomplexe 1676

 2.2.6 Organische Verbindungen des Rutheniums und Osmiums 1679

Kapitel XXX Die Cobaltgruppe .. 1681

1 Das Cobalt ... 1681

 1.1 Das Element Cobalt ... 1681

 Vorkommen (S. 1681), Darstellung (S. 1681), Physikalische Eigenschaften (S. 1682),
 Chemische Eigenschaften (S. 1682), Verwendung, Legierungen (S. 1682), Cobalt in
 Verbindungen (S. 1682)

 1.2 Verbindungen des Cobalts .. 1683

 1.2.1 Cobalt(II)- und Cobalt(III)-Verbindungen (d^7, d^6) 1683

 Wasserstoffverbindungen (S. 1683), Halogen- und Pseudohalogenverbindungen
 (S. 1684), Chalkogenverbindungen (S. 1686), Pentel-, Tetrel-, Trielverbindungen
 (S. 1690), Cobalt(II)- und Cobalt(III)-Komplexe (S. 1690), Cobalt in der Biosphäre
 (S. 1693)

 1.2.2 Cobalt(IV)- und Cobalt(V)-Verbindungen (d^5, d^4) 1694

 1.2.3 Organische Verbindungen des Cobalts 1694

 Cobaltorganyle (S. 1694•), Katalytische Prozesse unter Beteiligung von Co-organylen
 (S. 1695•)

2 Das Rhodium und Iridium ... 1696

 2.1 Die Elemente Rhodium und Iridium 1696

 Vorkommen (S. 1696), Darstellung (S. 1696), Physikalische Eigenschaften (S.1696),
 Chemische Eigenschaften (S. 1697), Verwendung, Legierungen (S. 1697), Rhodium
 und Iridium in Verbindungen (S. 1697), Vergleichende Betrachtungen (S. 1698)
2.2 Verbindungen des Rhodiums und Iridiums .. 1698
2.2.1 Wasserstoffverbindungen ... 1698
2.2.2 Halogen- und Pseudohalogenverbindungen 1699
2.2.3 Chalkogenverbindungen .. 1702
2.2.4 Pentel-, Tetrel-, Trielverbindungen .. 1704
2.2.5 Rhodium- und Iridiumkomplexe .. 1704
2.2.6 Organische Verbindungen des Rhodiums und Iridiums 1706

Rhodium- und Iridiumorganyle (S. 1706•), Katalytische Prozesse unter Beteiligung von Rh-Organyle (S. 1706•)

Kapitel XXXI Die Nickelgruppe .. 1709
1 Das Nickel .. 1709
1.1 Das Element Nickel ... 1709
Vorkommen (S. 1709), Darstellung (S. 1710), Physikalische Eigenschaften (S. 1710), Chemische Eigenschaften (S. 1710), Verwendung, Legierungen, Nickel-Batterien (S. 1711), Nickel in Verbindungen (S. 1711)

1.2 Verbindungen des Nickels .. 1712
1.2.1 Nickel(II)- und Nickel(III)-Verbindungen (d^8, d^9) 1712
Wasserstoffverbindungen (S. 1712), Halogen- und Pseudohalogenverbindungen (S. 1713), Chalkogenverbindungen (S. 1714), Pentel-, Tetrel-, Trielverbindungen (S. 1716), Nickel(II)- und Nickel(III)-Komplexe (S. 1717), Nickel in der Biosphäre (S. 1720)

1.2.2 Nickel(IV)-Verbindungen (d^6) ... 1720
1.2.3 Organische Verbindungen des Nickels 1720
Nickelorganyle (S. 1720•), Katalytische Prozesse unter Beteiligung von Ni-organyle (S. 1720•)

2 Das Palladium und Platin ... 1722
2.1 Die Elemente Palladium und Platin ... 1722
Vorkommen (S. 1722), Darstellung (S. 1722), Physikalische Eigenschaften (S. 1724), Chemische Eigenschaften (S. 1724), Verwendung, Legierungen (S. 1724), Palladium und Platin in Verbindungen (S. 1725), Vergleichende Betrachtungen (S. 1725)

2.2 Verbindungen des Palladiums und Platins 1726
2.2.1 Wasserstoffverbindungen ... 1726
2.2.2 Halogen- und Pseudohalogenverbindungen 1726
2.2.3 Chalkogenverbindungen .. 1732
2.2.4 Pentel-, Tetrel-, Trielverbindungen .. 1735
2.2.5 Palladium- und Platinkomplexe .. 1735
2.2.6 Organische Verbindungen des Palladiums und Platins 1739
Palladium- und Platinorganyle (S. 1739•), Katalytische Prozesse unter Beteiligung von Pd-organyle (S. 1741•)

Kapitel XXXII Überblick über wichtige Verbindungsklassen der Übergangsmetalle 1744
1 Einige Klassen anorganischer Übergangsmetallverbindungen 1744
1.1 Wasserstoffverbindungen .. 1744
1.1.1 Übergangsmetallhydride .. 1745
1.1.2 Diwasserstoffkomplexe der Übergangsmetalle 1748
1.2 Halogen- und Pseudohalogenverbindungen 1750
1.2.1 Übergangsmetallhalogenide .. 1750
Struktur- und Bindungsverhältnisse (S. 1751), Darstellung und Eigenschaften (S. 1755)
1.2.2 Metallcluster-Komplexe vom Halogenid-Typ 1756
1.2.3 Übergangsmetallcyanide .. 1759
XXXVI Inhalt

1.2.4 Übergangsmetallazide .. 1761
1.3 Sauerstoffverbindungen. Nichtstöchiometrie 1762
1.3.1 Übergangsmetalloxide, Nichtstöchiometrie 1762
1.3.2 Disauerstoffkomplexe der Übergangsmetalle 1766
1.4 Stickstoffverbindungen ... 1771
1.4.1 Übergangsmetallnitride .. 1771
1.4.2 Distickstoffkomplexe der Übergangsmetalle 1775
2 Metallcarbonyle und verwandte Komplexe 1780
 2.1 Die Metallcarbonyle ... 1780
 2.1.1 Grundlagen, Metallcluster-Komplexe vom Carbonyl-Typ 1780
 Überblick (S. 1780•), Strukturverhältnisse (S. 1781•), Bindungsverhältnisse (S. 1787•)
 2.1.2 Darstellung ... 1789•
 2.1.3 Eigenschaften. Die Metalltrifluorphosphane und -carbonyllhalogenide 1791
 2.1.4 Verwendung ... 1798
 2.2 Die Metallcarbonyl-Anionen, -Hydride und -Kationen 1799
 2.2.1 Metallcarbonyl-Anionen .. 1799
 2.2.2 Metallcarbonylwasserstoffe 1804•
 2.2.3 Metallcarbonyl-Kationen ... 1809
 2.3 Die Verwandten der Metallcarbonyle 1812
 2.3.1 Thio-, Seleno- und Tellurocarbonyl-Komplexe 1812
 2.3.2 Isocyanido- (Isonitril-) Komplexe 1813
 2.3.3 Nitrosyl-Komplexe .. 1816•
 Grundlagen (S. 1816•), Darstellung (S. 1820•), Eigenschaften (S. 1821•)
3 Einige Klassen organischer Übergangsmetallverbindungen 1823
 3.1 Organische n-Komplexe der Übergangsmetalle 1823
 3.1.1 Metallorganyle .. 1824
 3.1.2 Alkylidenmetallkomplexe (Carbenkomplexe) 1829
 3.1.3 Alkyldinnmetallkomplexe (Carbinkomplexe) 1832
 3.2 Organische σ-Komplexe der Übergangsmetalle 1833
 3.2.1 σ-Metallkomplexe der Alkane 1833
 σ-CH-Metallkomplexe (S. 1833•), σ-CC-Metallkomplexe (S. 1835•)
 3.2.2 σ-Metallkomplexe der Silane und anderer Hydride 1836
 3.3 Organische π-Komplexe der Übergangsmetalle 1837
 3.3.1 Alkenmetallkomplexe (Olefinkomplexe) 1838
 Metallkomplexe mit Ethylen und seinen Derivaten (S. 1838•), Metallkomplexe mit Butadien und seinen Derivaten (S. 1842•), Metallkomplexe mit Allyl und seinen Derivaten (S. 1844•)
 3.3.2 Alkinmetallkomplexe (Acetylenkomplexe) 1847
 3.3.3 Cyclopentadienyl-Metallkomplexe und Derivate 1850
 Homoleptische Cyclopentadienyl-Metallkomplexe und Derivate (S. 1850•), Heteroleptische Cyclopentadienyl-Metallkomplexe und Derivate (S. 1857•), Arenanellierte und heteroatomsubstituierte Cyclopentadienyl-Metallkomplexe (S. 1862•)
 3.3.4 Benzol-Metallkomplexe und Derivate 1863
 Sandwichkomplexe des Benzols und seiner Derivate (S. 1863•), Halbsandwichkomplexe des Benzols und seiner Derivate (S. 1867•)
 3.3.5 Cyclopropenyl-, Cyclobutadien-, Cycloheptatrienyl- und Cyclooctatetraen-Metallkomplexe und Derivate 1868
 3.4 Katalytische Prozesse unter Beteiligung von Metallorganyle 1872
Teil D Lanthanoide, Actinoide, Transactinoide

Kapitel XXXIII Lanthanoide und Actinoide (Innere Übergangsmetalle)

1 Periodensystem (Teil IV) der Lanthanoide und Actinoide
1.1 Elektronenkonfiguration der Lanthanoide und Actinoide
1.2 Einordnung der Lanthanoide und Actinoide in das Periodensystem
2 Trends einiger Eigenschaften der Lanthanoide und Actinoide

Kapitel XXXIV Grundlagen der Kernchemie

1 Die natürliche Elementumwandlung
1.1 Natürlicher radioaktiver Zerfall
1.1.1 Der α- sowie β-Zerfall
1.1.2 Asymmetrische und superasymmetrische Kernspaltung
1.2 Energie des radioaktiven Zerfalls
1.2.1 Energieinhalt und -art der radioaktiven Strahlung
1.2.2 Strahlungswechselwirkung mit Materie
1.2.3 Radioaktiver Energieumsatz
1.3 Geschwindigkeit des radioaktiven Zerfalls
1.3.1 Zerfallskonstante, Halbwertszeit, Aktivität
1.3.2 Radioaktives Gleichgewicht
1.4 Mechanismus des radioaktiven Zerfalls
2 Die künstliche Elementumwandlung
2.1 Die Kern-Einzelreaktion
2.1.1 Die einfache Kernreaktion
2.1.2 Die Kernzersplitterung
2.1.3 Die Kernspaltung
2.1.4 Die Kernverschmelzung. Evolution des Universums
2.2 Die Kern-Kettenreaktion
2.2.1 Die gesteuerte Kern-Kettenreaktion
2.2.2 Die ungesteuerte Kern-Kettenreaktion

Kapitel XXXV Die Lanthanoide

1 Vorkommen
2 Gewinnung
3 Physikalische Eigenschaften
4 Chemische Eigenschaften
5 Verbindungen der Lanthanoide
XXXVIII Inhalt

5.1 Anorganische Verbindungen der Lanthanoide 1940
Wasserstoffsverbindungen (S. 1940), Halogenverbindungen (S. 1941), Sauerstoffverbindungen (S. 1942), Sonstige binäre Verbindungen (S. 1944), Salze (S. 1944), Komplexe (S. 1944)

5.2 Organische Verbindungen der Lanthanoide 1945

Kapitel XXXVI Die Actinoide .. 1948
1 Vorkommen ... 1949
2 Gewinnung ... 1950
 2.1 Gewinnung von Thorium, Protactinium und Uran 1950
 2.2 Gewinnung der Transurane ... 1951
 Erzeugung der Transurane (S. 1951), Trennung der Transurane (S. 1954), Gewinnung der elementaren Transurane (S. 1955)
3 Physikalische Eigenschaften .. 1955
4 Chemische Eigenschaften .. 1957
5 Radiochemische Eigenschaften .. 1965
6 Verbindungen der Actinoide .. 1968
 6.1 Anorganische Verbindungen der Actinoide 1968
 6.2 Organische Verbindungen der Actinoide 1975

Kapitel XXXVII Die Transactinoide („Superschwere Elemente“) 1977
1 Erzeugung und Radiochemie der Transactinoide 1978
 Allgemeines zur Gewinnung und zum Nachweis der Transactinoide (S. 1978), Spezielles zur Gewinnung und zum Nachweis der Transactinoide (S. 1979)
2 Eigenschaften der Transactinoide .. 1982
 2.1 Physikalische Eigenschaften .. 1982
 2.2 Chemische Eigenschaften .. 1986

Schlusswort ... 1988
Die gegenseitige Umwandlung von Masse und Energie 1988

Teil E Anhang ... 1991

I Zahlentabellen ... 1993
II SI-Einheiten ... 1995
III Natürliche Nuklide .. 1999
IV Radien von Atomen und Ionen ... 2002
V Bindungslängen (ber.) zwischen Hauptgruppenelementen 2006
VI Normalpotentiale .. 2007
VII Nobelpreise für Chemie und Physik 2011
VIII Nomenklatur der Anorganischen Chemie 2017

Personenregister ... 2033
Sachregister ... 2049
Tafeln
(Tafel I siehe vorderer, Tafel VI siehe hinterer Buchdeckel)
I Langperiodensystem
II Elemente ... 2144
III Hauptgruppenelemente ... 2146
IV Nebengruppenelemente ... 2148
V Lanthan und Lanthanoide, Actinium und Actinoide 2149
VI Kombiniertes Periodensystem