List of definitions and notations

Set theory

$|M|$ is the cardinality of a set M (if G is a finite group, then $|G|$ is called its order).

$x \in M \ (x \notin M)$ means that x is (is not) an element of a set M. $N \subseteq M \ (N \not\subseteq M)$ means that N is (is not) a subset of the set M; moreover, if $M \neq N \subseteq M$ we write $N \subset M$.

\emptyset is the empty set.

N is called a nontrivial subset of M, if $N \neq \emptyset$ and $N \subset M$. If $N \subset M$ we say that N is a proper subset of M.

$M \cap N$ is the intersection and $M \cup N$ is the union of sets M and N. If M, N are sets, then $N - M = \{x \in N \mid x \notin M\}$ is the difference of N and M.

\mathbb{Z} is the set (ring) of integers: \(\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots \} \).

\mathbb{N} is the set of all natural numbers.

\mathbb{Q} is the set (field) of all rational numbers.

\mathbb{R} is the set (field) of all real numbers.

\mathbb{C} is the set (field) of all complex numbers.

Number theory and general algebra

p is always a prime number.

π is a set of primes; π' is the set of all primes not contained in π.

m, n, k, r, s are, as a rule, natural numbers.

$\pi(m)$ is the set of prime divisors of m; then m is a π-number.

n_p is the p-part of n, n_π is the π-part of n.

(m, n) is the greatest common divisor of m and n.

$m \mid n$ should be read as: m divides n.

$m \nmid n$ should be read as: m does not divide n.
GF(p^m) is the finite field containing p^m elements.

\mathbb{F}^* is the multiplicative group of a field \mathbb{F}.

$L(G)$ is the lattice of all subgroups of a group G.

If $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ is the standard prime decomposition of n, then $\lambda(n) = \sum_{i=1}^{k} \alpha_i$.

Groups

We consider only finite groups which are denoted, with a pair exceptions, by upper case Latin letters.

If G is a group, then $\pi(G) = \pi(|G|)$.

G is a p-group if $|G|$ is a power of p; G is a π-group if $\pi(G) \subseteq \pi$.

G is, as a rule, a finite p-group.

$H \leq G$ means that H is a subgroup of G.

$H < G$ means that $H \leq G$ and $H \neq G$ (in that case H is called a proper subgroup of G). $\{1\}$ denotes the group containing only one element.

H is a nontrivial subgroup of G if $\{1\} < H < G$.

H is a maximal subgroup of G if $H < G$ and it follows from $H \leq M < G$ that $H = M$.

$H \trianglelefteq G$ means that H is a normal subgroup of G; moreover, if, in addition, $H \neq G$ we write $H \vartriangleleft G$ and say that H is a proper normal subgroup of G. Expressions ‘normal subgroup of G’ and ‘G-invariant subgroup’ are synonyms.

$H \vartriangleleft G$ is called a nontrivial normal subgroup of G provided $H > \{1\}$.

H is a minimal normal subgroup of G if (a) $H \trianglelefteq G$; (b) $H > \{1\}$; (c) $N \triangleleft G$ and $N < H$ implies $N = \{1\}$. Thus, the group $\{1\}$ has no minimal normal subgroup.

G is simple if it is a minimal normal subgroup of G (so $|G| > 1$).

H is a maximal normal subgroup of G if $H < G$ and G/H is simple.

The subgroup generated by all minimal normal subgroups of G is called the socle of G and denoted by $\mathrm{Sc}(G)$. We put, by definition, $\mathrm{Sc}(\{1\}) = \{1\}$.

$N_G(M) = \{ x \in G \mid x^{-1} M x = M \}$ is the normalizer of a subset M in G.

$C_G(x)$ is the centralizer of an element x in G : $C_G(x) = \{ z \in G \mid zx = xz \}$.

$C_G(M) = \bigcap_{x \in M} C_G(x)$ is the centralizer of a subset M in G.

If $A \leq B$ and $A, B \trianglelefteq G$, then $C_G(B/A) = H$, where $H/A = C_{G/A}(B/A)$.
A wr B is the wreath product of the ‘passive’ group A and the transitive permutation group B (in what follows we assume that B is regular); B is called the active factor of the wreath product). Then the order of that group is $|A|^{|B|}$.

$\text{Aut}(G)$ is the group of automorphisms of G (the automorphism group of G).

$\text{Inn}(G)$ is the group of all inner automorphisms of G.

$\text{Out}(G) = \text{Aut}(G)/\text{Inn}(G)$, the outer automorphism group of G.

If $a, b \in G$, then $a^b = b^{-1}ab$.

An element $x \in G$ inverts a subgroup $H \leq G$ if $h^x = h^{-1}$ for all $h \in H$.

If $M \leq G$, then $\langle M \rangle = \langle x \mid x \in M \rangle$ is the subgroup of G generated by M.

$M^x = x^{-1}Mx = \{y^x \mid y \in M\}$ for $x \in G$ and $M \leq G$.

$[x, y] = x^{-1}y^{-1}xy = x^{-1}y^x$ is the commutator of elements x, y of G. If $M, N \leq G$ then $[M, N] = \langle [x, y] \mid x \in M, y \in N \rangle$ is a subgroup of G.

$o(x)$ is the order of an element x of G.

An element $x \in G$ is a π-element if $\pi(o(x)) \subseteq \pi$.

G is a π-group, if $\pi(G) \subseteq \pi$. Obviously, G is a π-group if and only if all of its elements are π-elements.

G' is the subgroup generated by all commutators $[x, y], x, y \in G$ (i.e., $G' = [G, G]$), $G^{(2)} = [G', G'] = G'' = (G')', G^{(3)} = [G'', G''] = (G'')'$ and so on. G' is called the commutator (or derived) subgroup of G.

$Z(G) = \bigcap_{x \in G} C_G(x)$ is the center of G.

$Z_i(G)$ is the i-th member of the upper central series of G; in particular, $Z_0(G) = \{1\}$, $Z_1(G) = Z(G)$.

$K_i(G)$ is the i-th member of the lower central series of G; in particular, $K_2(G) = G'$. We have $K_i(G) = [G, \ldots, G]$ ($i \geq 1$ times). We set $K_1(G) = G$.

If G is nonabelian, then $\eta(G)/K_3(G) = Z(G/K_3(G))$.

$\mathcal{M}(G) = \langle x \in G \mid C_G(x) = C_G(x^p) \rangle$ is the Mann subgroup of a p-group G.

$\text{Syl}_p(G)$ is the set of p-Sylow subgroups of an arbitrary finite group G.

S_n is the symmetric group of degree n.

A_n is the alternating group of degree n.

Σ_p^n is a Sylow p-subgroup of S_p^n.

$\text{GL}(n, F)$ is the set of all nonsingular $n \times n$ matrices with entries in a field F, the n-dimensional general linear group over F, $\text{SL}(n, F) = \{A \in \text{GL}(n, F) \mid \det(A) = 1 \in F\}$, the n-dimensional special linear group over F.
If $H \leq G$, then $H_G = \bigcap_{x \in G} x^{-1} H x$ is the core of the subgroup H in G and $H^G = \bigcap_{H \leq N \leq G} N$ is the normal closure or normal hull of H in G. Obviously, $H_G \leq G$.

If G is a p-group, then $p^{b(x)} = |G : C_G(x)|$; $b(x)$ is said to be the breadth of $x \in G$, where G is a p-group; $b(G) = \max\{b(x) \mid x \in G\}$ is the breadth of G.

$\Phi(G)$ is the Frattini subgroup of G (= the intersection of all maximal subgroups of G), $\Phi(\{1\}) = \{1\}$, $p^{d(G)} = |G : \Phi(G)|$.

$\Gamma_i = \{H < G \mid \Phi(G) \leq H, |G : H| = p^i\}, i = 1, \ldots, d(G)$, where $G > \{1\}$.

If $H < G$, then $\Gamma_1(H)$ is the set of all maximal subgroups of H.

$\exp(G)$ is the exponent of G (the least common multiple of the orders of elements of G). If G is a p-group, then $\exp(G) = \max\{o(x) \mid x \in G\}$.

$k(G)$ is the number of conjugacy classes of $G (= G$-classes$)$, the class number of G.

K_x is the G-class containing an element x (sometimes we also write $ccl_G(x)$).

C_m is the cyclic group of order m.

G^m is the direct product of m copies of a group G.

$A \times B$ is the direct product of groups A and B.

$A \ast B$ is a central product of groups A and B, i.e., $A \ast B = AB$ with $[A, B] = \{1\}$.

$E_{p^m} = C_p^m$ is the elementary abelian group of order p^m. G is an elementary abelian p-group if and only if it is a p-group $> \{1\}$ and G coincides with its socle. Next, $\{1\}$ is elementary abelian for each prime p.

A group G is said to be homocyclic if it is a direct product of isomorphic cyclic subgroups (obviously, elementary abelian p-groups are homocyclic).

$ES(m, p)$ is an extraspecial group of order p^{1+2m} (a p-group G is said to be extraspecial if $G' = \Phi(G) = Z(G)$ is of order p). Note that for each $m \in \mathbb{N}$, there are exactly two nonisomorphic extraspecial groups of order p^{2m+1}.

$S(p^3)$ is a nonabelian group of order p^3 and exponent $p > 2$.

A special p-group is a nonabelian p-group G such that $G' = \Phi(G) = Z(G)$ is elementary abelian. Direct products of extraspecial p-groups are special.

D_{2m} is the dihedral group of order $2m$, $m > 2$. Some authors consider E_{2^2} as the dihedral group D_4.

Q_{2^m} is the generalized quaternion group of order $2^m \geq 2^3$.

SD_{2^m} is the semidihedral group of order $2^m \geq 2^4$.

M_{p^m} is a nonabelian p-group containing exactly p cyclic subgroups of index p.
cl(G) is the \textit{nilpotence class} of a \(p \)-group \(G \).

dl(G) is the \textit{derived length} of a \(p \)-group \(G \).

CL(G) is the set of all \(G \)-classes.

A \(p \)-group of \textit{maximal class} is a nonabelian group \(G \) of order \(p^m \) with \(\text{cl}(G) = m - 1 \).

\(\Omega_m(G) = \{ x \in G \mid o(x) \leq p^m \} \), \(\Omega'_m(G) = \{ x \in G \mid o(x) = p^m \} \) and \(\mathcal{U}_m(G) = \langle x^{p^m} \mid x \in G \rangle \).

A \(p \)-group is absolutely regular if \(|G/\mathcal{U}_1(G)| < p^p \).

A \(p \)-group is \textit{thin} if it is either absolutely regular or of maximal class.

\(G = A \cdot B \) is a \textit{semidirect product} with kernel \(B \) and complement \(A \).

A group \(G \) is an extension of \(N \trianglelefteq G \) by a group \(H \) if \(G/N \cong H \). A group \(G \) splits over \(N \) if \(G = H \cdot N \) with \(H \leq G \) and \(H \cap N = \{1\} \) (in that case, \(G \) is a semidirect product of \(H \) and \(N \) with kernel \(N \)).

\(H^\# = H - \{ e_H \} \), where \(e_H \) is the identity element of the group \(H \). If \(M \subseteq G \), then \(M^\# = M - \{ e_G \} \).

An automorphism \(\alpha \) of \(G \) is \textit{regular} (= \textit{fixed-point-free}) if it induces a regular permutation on \(G^\# \) (a permutation is said to be \textit{regular} if it has no fixed points).

An \textit{involution} is an element of order 2 in a group.

A \textit{section} of a group \(G \) is an epimorphic image of some subgroup of \(G \).

If \(F = \text{GF}(p^n) \), then we write \(\text{GL}(m, p^n), \text{SL}(m, p^n), \ldots \) instead of \(\text{GL}(m, F), \text{SL}(m, F), \ldots \).

c\(_n(G) \) is the number of cyclic subgroups of order \(p^n \) in a \(p \)-group \(G \).

s\(_n(G) \) is the number of subgroups of order \(p^n \) in a \(p \)-group \(G \).

e\(_n(G) \) is the number of subgroups of order \(p^n \) and exponent \(p \) in \(G \).

\(\mathcal{A}_n \)-group is a \(p \)-group \(G \) all of whose subgroups of index \(p^n \) are abelian but \(G \) contains a nonabelian subgroup of index \(p^{n-1} \). In particular, \(\mathcal{A}_1 \)-group is a minimal nonabelian \(p \)-group for some \(p \).

\(\alpha_n(G) \) is the number of \(\mathcal{A}_n \)-subgroups in a \(p \)-group \(G \).

\textbf{Characters and representations}

\(\text{Irr}(G) \) is the set of all \textit{irreducible} characters of \(G \) over \(\mathbb{C} \).

A character of degree 1 is said to be \textit{linear}.

\(\text{Lin}(G) \) is the set of all \textit{linear} characters of \(G \) (obviously, \(\text{Lin}(G) \subseteq \text{Irr}(G) \)).
Irr_1(G) = Irr(G) - Lin(G) is the set of all *nonlinear* irreducible characters of G;
n(G) = |Irr_1(G)|.

χ(1) is the *degree* of a character χ of G,

χ_H is the *restriction* of a character χ of G to H ≤ G.

χ_G is the character of G induced from the character χ of some subgroup of G.

̅χ is a character of G defined as follows: ̅χ(x) = ̅χ(x) (here ̅w is the complex conjugate of w ∈ C).

Irr(χ) is the set of irreducible constituents of a character χ of G.

If χ is a character of G, then ker(χ) = \{x ∈ G | χ(x) = χ(1)\} is the *kernel* of a character χ.

Z(χ) = \{x ∈ G | |χ(x)| = χ(1)\} is the *quasikernel* of χ.

If N ≤ G, then Irr(G | N) = {χ ∈ Irr(G) | N ∼ ker(χ)}.

⟨χ, τ⟩ = |G|^{-1} ∑_{x ∈ G} χ(x)τ(x^{-1}) is the *inner product* of characters χ and τ of G.

I_G(ϕ) = \{x ∈ G | ϕ^x = ϕ\} is the *inertia subgroup* of ϕ ∈ Irr(H) in G, where H ≤ G.

1_G is the *principal character* of G (1_G(x) = 1 for all x ∈ G).

M(G) is the *Schur multiplier* of G.

cd(G) = {χ(1) | χ ∈ Irr(G)}.

mc(G) = k(G)/|G| is the *measure of commutativity* of G.

T(G) = ∑_{χ ∈ Irr(G)} χ(1), f(G) = T(G)/|G|.